
by 
Sally Blanning DeJean
and David DeJean

Level: Advanced
Works with: Notes/Domino 6
Updated:  03-Mar-2002

In the previous LDD Today article, "LotusScript: XML classes in Notes/Domino 6," we introduced you to the 
new LotusScript XML classes and to the DOM and SAX parsers for exporting Domino data to DXL (Domino XML 
language). This article continues that discussion by introducing you to the XSL transformer for converting DXL to 
other markup languages, particularly HTML, and using the DXL importer to convert XML to NSF format. This 
article and the previous article are part of a series that investigates the changes to the LotusScript programming 
language in Notes/Domino 6.

The code samples referenced in this article are available for download from the Sandbox. Before you use the 
sample databases, create a local dxl directory on your C: drive.

Using the XSL transformer
XSL (for "XML Stylesheet Language") is one way to control the reformatting, or transformation, of an XML file into 
a different format or another markup language. If you've worked with Cascading Style Sheets, XSL will look 
familiar. The way it works is similar as well. In fact, you can use CSS stylesheets to transform XML files into HTML 
for display in a Web browser.

The need to transform data is everywhere. For example, your company may keep its CRM (customer relationship 
management) data in a Domino database that you maintain. When your company forms a business partnership 
with another company, it must share part of its customer information. The partner organization wants contact 
information, but not historical data, and only for part of the country. And they have their own CRM system. How 
would you get the data to them? If the need were internal and you had full knowledge of both systems, you might 
use Lotus Enterprise Integrator (LEI). But the partner is external, and you only know your end of the transaction. In 
this case, XML is the answer, and an XSL transform is the key.

The Export Only Data—XSLT agent
In the previous article, we introduced our Hello World sample database that included agents that exported Domino 
data to DXL. Our DXL Hello World data isn't as complicated as a contact record; it's only one field with a default 
value of Hello World. But the principles of transformation are the same. An agent named 5. Export Only 
Data—XSLT uses an XSL stylesheet named dxlhelloworld_data.xsl to control the reformatting of the DXL Hello 
World database into an XML file that contains only a minimal amount of data. You can look at this agent's code in 
the sample database. If you want to run it, you'll have to copy the stylesheet out of the database (it's saved in the 
Files section under Shared Resources) and save it in the c:\dxl directory you created earlier.

Here are the relevant sections of the agent. After the initial set-up, it creates two stream objects (one to represent 
the stylesheet and one to represent the XML output file) and does some checking to make sure the files and 
pathnames are all correct:

Dim XSL_ss As NotesStream  ' stylesheet

© Copyright IBM 1



Lotus Developer Domain: LotusScript: More XML classes Notes/Domino 6
www.lotus.com/ldd/today.nsf

Set XSL_ss=session.CreateStream
If Not XSL_ss.Open(pathname$ & filename$ &".xsl") Then

Messagebox "Cannot open " & filename$,, "XSL file error"
Exit Sub

End If

Dim XML_out As NotesStream  ' output file
Set XML_out=session.CreateStream
If Not XML_out.Open(pathname$ & filename$ & ".xml") Then

Messagebox "Cannot create " & filename$,, "TXT file error"
Exit Sub

End If
XML_out.Truncate

The database is first slimmed down by the same NotesNoteCollection code used in the previous article to limit the 
exported data just to documents:

Dim nc As NotesNoteCollection
Set nc = db.CreateNoteCollection(False)
nc.SelectDocuments=True
Call nc.BuildCollection

The NotesDXLExporter object is created and its input is specified nc for the NotesNoteCollection. Notice that no 
output is specified:

Dim exporter As NotesDXLExporter
Set exporter = session.CreateDXLExporter(nc)

The NotesXSLTransformer object is created with three arguments: an input (exporter), the stylesheet (SXL_ss), 
and an output file (XML_out). Specifying exporter, the NotesDXLExporter object, as the input for the XSL 
transformer sets up the pipeline between the two objects:

Dim transformer As NotesXSLTransformer
Set transformer=session.CreateXSLTransformer(exporter, XSL_ss, XML_out)

When you run the agent, it transforms the DXL file using the SXL_ss stylesheet. The result is a minimal 
representation of the Domino data:

<?xml version="1.0" encoding="UTF-8"?>
<database xmlns:dxl="http://www.lotus.com/dxl" numberofdocuments="1" dbid="85256C7500771804" 
replicaid="85256C7500771804" path="dxlhelloworld.nsf" title="DXL Hello World">

<document unid="2650244E74784BD985256C85004F5EDA" form="Hello">
<item name="HelloData">Hello World.</item>

</document>
</database>

When you compare this output to the file created by the agents in the previous article, you'll see that not only have 
elements been dropped, but attributes have been moved between elements. The numberofdocuments and dbid 
attributes of the database item, for example, used to be in the <databaseinfo> element. The unid attribute of the 
<document> element has migrated from its child element named <noteinfo>. All of the <datetime> elements for 
adds and updates have disappeared.

The XSL stylesheet
If you watch the LotusScript debugger when you run the Export Only Data agent, you won't see any of these things 
happen. When it gets down to the line exporter.Process, the debugger might as well put up a Messagebox that 
says, "Magic happens here."

What actually happens is that the NotesXMLProcessor class's XSL Transformer engine applies the stylesheet to 
the DXL pipelined from the exporter. An in-depth tutorial on XSL stylesheets is not what this article is about, but 
the Hello World stylesheet will give you some code you can use as a starting point, and it makes clear some of the 
basics of stylesheet writing.

The basics start with the declarations—an XML declaration, an XSL declaration, and an output declaration:

© Copyright IBM 2



Lotus Developer Domain: LotusScript: More XML classes Notes/Domino 6
www.lotus.com/ldd/today.nsf

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0"
xmlns:dxl='http://www.lotus.com/dxl'>
xmlns:dxl='http://www.lotus.com/dxl'>
<xsl:output method="xml" indent="yes"/>

The most interesting of these is the XSL declaration, which specifies two XML namespaces—one for the XSL 
objects used in the transformation and one for the DXL objects. The namespace for DXL looks like a URL, 
http://www.lotus.com/dxl, but it isn't. It looks like a URI, but in fact, it's not anything at all. If you enter it in a 
browser, you get back an error 404-File not found. The XSL namespace URI does a little better: It points you to a 
couple of W3C Web documents about XML and XSL namespaces.

A namespace is something like a DTD. It's an optional (and usually hypothetical) document that is where you 
would define exactly what meanings you apply to the names you give to the elements and attributes in your XML. 
The most important practical benefit of namespaces is that stylesheets use namespace abbreviations as 
identifiers. In the Hello World stylesheet, the preface xsl: tells the transformer that it owns the item with this name, 
which may actually be a processing instruction, while the preface dxl: tells the transformer it should look for the 
following name in the DXL file.

Stylesheets are written in a syntax that includes very few verbs in the code. The verbs that do appear (such as 
match and select) make a stylesheet look more like a database search than a programming language. In fact, XSL 
works more like the Find function in a word processor or a Web browser. You tell it what to look for in the file. If it 
finds it, it sets the current context there. The element <xsl:apply-templates select="dxl:database"/> might be 
translated into English as, "Find an element in the DXL file named 'database'." The action it should take in that 
location is specified by a template: The element <xsl:template match="dxl:database"> in English would be, "When 
you locate an element named 'database,' perform the following actions."

Some templates are built into the transformer. The stylesheet begins execution at the root element, for example, 
so that the first instruction in the stylesheet, <xsl:template match="/">, is not a Find instruction, but the start of a 
templated action. (The element you may expect to start a stylesheet with, <xsl:apply-templates match="/">, is 
likely to invoke some of the built-in templates and produce unexpected results in the output.)

As you write XSL templates, it may help to think of the stylesheet in terms of a sort of chess game. The select 
elements move you across the board to a new location. The match elements start processing actions in the 
context of this new location. The first select/match pair in the stylesheet shows this:

<xsl:template match="/">
<xsl:apply-templates select="dxl:database"/>
</xsl:template>

<xsl:template match="dxl:database">
<xsl:element name="database">
<xsl:apply-templates select="dxl:databaseinfo"/>
<xsl:attribute name="replicaid"><xsl:value-of select="@replicaid"/></xsl:attribute>
<xsl:attribute name="path"><xsl:value-of select="@path"/></xsl:attribute>
<xsl:attribute name="title"><xsl:value-of select="@title"/></xsl:attribute>
<xsl:apply-templates select="dxl:document"/>
</xsl:element>
</xsl:template>

The select takes you from the root element to the first element in the DXL data named database (in fact, they're 
probably the same element, but that's OK). The match element is actually an if: "If a match was made, apply this 
template to do the following things." The first action, <xsl:element name="database">, creates a new element in 
the output. The next action is another select statement that moves you to another square on the board: The 
context switches from the database element to the first element in the DXL data named databaseinfo. Because 
the search starts within the context of the element named database, its scope is all the child elements of the 
database element. It finds an element named databaseinfo, moves the context there, and because a match has 
been made, it executes another template:

<xsl:template match="dxl:databaseinfo">
<xsl:attribute name="numberofdocuments"><xsl:value-of select="@numberofdocuments"/></xsl:attribute>
<xsl:attribute name="dbid"><xsl:value-of select="@dbid"/></xsl:attribute>

© Copyright IBM 3



Lotus Developer Domain: LotusScript: More XML classes Notes/Domino 6
www.lotus.com/ldd/today.nsf

</xsl:template>

The first instruction again creates a new element in the output—this one an attribute named numberofdocuments. 
The next element, <xsl:value-of select="@numberofdocuments"/>, looks for a value in an attribute (signified by the 
@ symbol) of the current element, databaseinfo, and writes what it finds to the output, then follows the next 
instruction, </xsl:attribute> to do just what you might expect: It ends the attribute. (It's important to remember that 
the value-of statement always returns a child of the selected element, and the text of the value of any element is 
considered by XSL to be a child element.) The final instruction creates and populates a dbid attribute, and then the 
template terminates.

Just as with a LotusScript subroutine, execution returns to the point in the stylesheet where the template was 
called. In our chessboard analogy, we are returned to the square where we landed when we searched for items 
named database. If there were more child elements of database named databaseinfo the template would be 
applied against them as well, but there are none, so the context remains set to the database element and the next 
element in the template that matches to database is executed. Three more attributes are written to the 
output—replicaid, path, and title. Then the template calls another template to execute against an element named 
document:

<xsl:template match="dxl:document">
<xsl:element name="document">
<xsl:apply-templates select="dxl:noteinfo"/>
<xsl:attribute name="form"><xsl:value-of select="@form"/></xsl:attribute>
<xsl:apply-templates select="dxl:item"/>
</xsl:element>
</xsl:template>

This template creates a new element in the output also named document, then looks for a child element named 
noteinfo. Another template executes when document is found to have a child named noteinfo:

<xsl:template match="dxl:noteinfo">
<xsl:attribute name="unid"><xsl:value-of select="@unid"/></xsl:attribute>
</xsl:template>

This template writes the unid of the document to the output as an attribute—not of noteinfo, but of document. 
When no other noteinfo fields are found, context passes back to document, and the form name is written as an 
attribute to the output. Then the template searches for children named item—the data fields in the Notes 
document:

<xsl:template match="dxl:item">
<xsl:element name="item">
<xsl:attribute name="name"><xsl:value-of select="@name"/></xsl:attribute>
<xsl:value-of select="."/>
</xsl:element>
</xsl:template>

The template matches each element named item and creates a new item in the output called item with an attribute 
called name that holds the name of the item (in this case HelloData, the field name assigned in Notes) and copies 
the item's value to the output using the instruction <xsl:value-of select="."/>. The "." is a contextual referent that 
means this or here. The value-of element returns only the value of the first instance of a match, so this element 
works because item has only one child element—the value "Hello World."

With that, the item template is finished. Context passes back to the document element. Because there are no 
more item children of document, context passes back to the database element. Because there are no more 
document children of database, context passes back to the root element. Because there are no more database 
children of the root, we're done:

</xsl:stylesheet>

The XSL stylesheet we used to get this result wasn't particularly sophisticated. XSL is a language capable of much 
more than we can get into here. But even with these few lines of example code and the ability to export an NSF file 
as DXL and look at it, you can see how you might turn your CRM database into an address list sorted by region, or 
whatever your application might be.

© Copyright IBM 4



Lotus Developer Domain: LotusScript: More XML classes Notes/Domino 6
www.lotus.com/ldd/today.nsf

Turning Notes into HTML
The output declaration in our XSL stylesheet said method = 'xml', so the transformer created the output as 
well-formed XML. We could specify method = 'text' and write a stylesheet that outputs text, or we could specify 
method = 'html' and create a stylesheet that outputs a Web page. This is particularly interesting because it means 
you can write LotusScript that turns Domino data into Web content that can be served to browser-based users 
without requiring that they access a Domino server—something that may be a plus in your environment for 
security or performance reasons.

The Create HTML agent
Here's an example. Open the example database dxlofficesupplies.nsf in Domino Designer and copy the stylesheet 
dxlofficesupplies.xsl from the Files section of Shared Resources into your c: directory. Then open the database in 
a Notes client and in the view named Office Items, click in the left column to select half a dozen documents. Run 
the agent named 1. Create HTML from the Actions menu. The agent turns the selected documents into a 
document collection, exports the collected documents as DXL, and applies the stylesheet named 
dxlofficesupplies.xsl to create an HTML page that is saved in c:\dxl as dxlofficesupplies.html. You can see the 
complete LotusScript code for the Create HTML agent in Domino Designer. Most of it looks very much like the 
previous examples we've seen. The major difference is the code that creates the document collection:

Dim db As Notesdatabase
Set db = session.currentdatabase
Dim dc As NotesDocumentCollection
Set dc = db.UnprocessedDocuments
Dim exporter As NotesDXLExporter
Set exporter = session.CreateDXLExporter(dc)

The documents marked in the view are gathered into the document collection by the UnprocessedDocuments 
method of NotesDatabase, and this collection is made the input for the DXL exporter—an elegantly simple way to 
export a single document or just a few documents selected by a user.

The XSL stylesheet, dxlofficesupplies.xsl, starts processing this DXL with a template that writes the tags required 
for an HTML document to the output stream. Notice that we don't have to do anything to signal that certain lines in 
the stylesheet are to be copied to the output. Because we specified HTML in the output declaration, the XSL 
transformer treats any tag that doesn't begin with xsl: or dxl: as HTML to be output:

<xsl:template match="/">
<html>

<head>
<title>XSL-XML Demo</title>

</head>
<body bgcolor="#ffffff" marginheight="0" marginwidth="0" leftmargin="0" topmargin="0">
<br />
<center>
<xsl:apply-templates select="dxl:database"/>

</center>
</body>

</html>
</xsl:template>

The <apply-templates> element is matched in the DXL by an element named <database>, so the next template 
writes a set of <table> tags and column headings to the output, then looks for DXL document elements:

<xsl:template match="dxl:database">
<table width="40%" cellpadding="8" cellspacing="8" border="0">

<tr>
<td colspan="2" bgcolor="99ccff">
<font face="arial" size="2">
<b>Office Supplies</b>
</font>
</td>
<td bgcolor="99ccff">
<font face="arial" size="2">
<b>Price</b>
</font>

© Copyright IBM 5



Lotus Developer Domain: LotusScript: More XML classes Notes/Domino 6
www.lotus.com/ldd/today.nsf

</td>
</tr>
<xsl:apply-templates select="dxl:document"/>

</table>
</xsl:template>

The template for DXL document elements creates a row within the table for each document found and cells for two 
items from the document, name and cost, then it writes the proper end tags for each HTML element:

<xsl:template match="dxl:document">
<tr>

<td width="5%"></td>
<td width="20%" bgcolor="336699">
<font face="arial" size="2" color="ffffff">

<xsl:value-of select="dxl:item[@name='Item']/dxl:text"/>
</font>
</td>
<td width="5%" bgcolor="6699cc" align="right">
<font face="arial" size="2">

<xsl:value-of select="dxl:item[@name='Cost']/dxl:number"/>
</font>
</td>

</tr>
</xsl:template>
</xsl:stylesheet>

As context passes back through the other templates, other end tags are added to complete the HTML document. 
The stylesheet terminates, the XSL transformer closes the output stream, and the agent is done. Depending on 
how many Notes documents you selected in the view, when you open the HTML document in a browser, it will 
look something like this:

Creating multiple HTML pages
Combining data from multiple Notes documents into a single HTML page is a technique that's especially useful for 
reporting. But perhaps even more useful is the ability to write documents out of a Domino database as individual 
HTML pages.

This might have benefits for both security and performance, and can provide an easy way to distribute Web 
content creation through your organization. An agent like the Create Multiple Pages agent in the DXL Office 
Supplies database makes it possible to create sets of HTML pages from Notes data that can be saved to a drive 
accessible by a Web server. You could create and update the pages on a regular schedule with a timed agent, 
serve them to the Web without the involvement (or exposure) of your Domino server, and control access to the 
content creation and editing through the ACL of the underlying database.

The agent named 2. Create Multiple Pages uses an XSL stylesheet, dxlofficesupplies_multi.xsl, that is slightly 
modified from the one used by Create HTML Page. Copy it from the Shared Files directory of the DXL Office 

© Copyright IBM 6



Lotus Developer Domain: LotusScript: More XML classes Notes/Domino 6
www.lotus.com/ldd/today.nsf

Supplies database and save it to c:\dxl before you run the agent.

The agent first creates a NotesViewEntryCollection that contains all the documents in the current view, which is 
named Office Items:

Dim view As NotesView
Set db = session.CurrentDatabase
Set view = db.GetView("Office Items")

It creates two counters: DocNumb, a sequence number for the current document, which is used to create a unique 
filename for the HTML page, and DocCount, the total number of documents in the view. The Doc object 
represents the current document:

Dim DocNumb As Integer
Dim DocCount As Integer
DocCount = view.EntryCount

Dim Doc As NotesDocument
Set Doc = view.GetFirstDocument
DocNumb = 1

Then it uses a Do While loop to iterate the process of creating the input and output streams, the exporter and XSL 
transformer, and to write the HTML file for the document. When the file is written, it decrements DocCount, 
increments DocNumb, gets the next document, and loops.

Do While DocCount > 0 

. . . . 

Call exporter.process

DocCount = DocCount - 1
DocNumb = DocNumb + 1
Set Doc = view.GetNextDocument(Doc)

Loop
Exit Sub

The XSL stylesheet called by the agent, dxlofficesupplies_multi.xsl, is only slightly modified from the version used 
to combine all the items into a single HTML page. It omits the template match to database because all the data we 
need is contained by the <document></document> tags. It writes out exactly the same HTML code, which this 
time produces a table with just one entry line—the item and price in the current document.

Using the DXL Importer
So far, we've focused on getting data out of Domino and into other formats and applications. But the XML features 
of LotusScript are equally useful for getting data from other sources into NSF files, using the new 
NotesDXLImporter class.

The Import DXL agent
The DXL importer is straightforward to use. To try it out, copy the brief XML file below and save it to your c:\dxl 
directory as additems.xml. Then in the DXL Office Supplies database, run the agent named 1. Import DXL from 
the Actions menu:

<?xml version="1.0" encoding="utf-8" ?> 
<database xmlns="http://www.lotus.com/dxl" version="6.0">

<document form="OF">
<item name="Item">

<text>Saddle stapler</text>
</item>
<item name="Cost">

<number>38.85</number>
</item>

</document>
<document form="OF">

© Copyright IBM 7



Lotus Developer Domain: LotusScript: More XML classes Notes/Domino 6
www.lotus.com/ldd/today.nsf

<item name="Item">
<text>Computer cleaning kit</text>

</item>
HYPERLINK "C:\dxl\"  <item name="Cost">

<number>21.95</number> 
</item>

</document>
</database>

The Office Items view should update immediately to display the two new documents included in this data: a saddle 
stapler and a computer cleaning kit. The Import DXL agent creates a NotesStream object to represent the data file 
and calls the DXL importer with the stream as the input and the current database as the output.

This works so smoothly because the XML data above conforms to the DXL DTD; the element names and 
parent-child relationships are all exactly the same as they would be if the same two items had been exported from 
the database. (The exported data would have included all the standard metadata, but its absence here doesn't 
cause the importer any problem—it supplies defaults for whatever it doesn't find.)

But what if the data you want to import looks like this:

<?xml version="1.0" encoding="utf-8" ?>
<newitems>

<item sku="123456">
<description>Stainless steel stapler</description>
<manufacturer>Acme Staplers</manufacturer>
<price>38.85</price>

</item>
<item sku="6544321">

<description>Computer screen cleaning kit</description>
<manufacturer>Squeegee Manufacturing</manufacturer>
<price>21.95</price>

</item>
</newitems>

It's well formed XML, but it's not DXL. There's no database tag, and there are data elements that have no 
counterparts in the Notes database, like sku and <manufacturer>. So you'll have to parse it and reformat it.

The Import Data - SAX agent
In this case, the data structure is relatively close to DXL, so we can write a SAX parser agent. (The SAX parser 
was discussed in detail in the first installment of this article. See the previous LDD Today article in this series, "
LotusScript: XML classes in Notes/Domino 6" for a thorough explanation of the SAX parser and examples of 
how the NotesSAXParser class is used.) You can run this example agent by first copying and saving the data 
above to your c:\dxl directory as newitems.xml. Then run the agent named 4. Import Data - SAX from the Actions 
menu. The two new items should pop into the view.

The agent doesn't save the data in DXL format; it just pipelines it from the parser to the importer. But if it did, the 
saved data would look like this:

<?xml version="1.0" encoding="utf-8" ?> 
<database xmlns="http://www.lotus.com/dxl" version="6.0">

<document form="FO">
<item name="SKU">

<number>123456</number>
</item>
<item name="Item">

<text>Stainless steel stapler</text>
</item>
<item name="Manufacturer">

<text>Acme Staplers</text>
</item>
<item name="Cost">

<number>38.85</number>
</item>

© Copyright IBM 8



Lotus Developer Domain: LotusScript: More XML classes Notes/Domino 6
www.lotus.com/ldd/today.nsf

</document>
<document form="FO">

<item name="SKU">
<number>6544321</number>

</item>
<item name="Item">

<text>Computer screen cleaning kit</text>
</item>
<item name="Manufacturer">

<text>Squeegee Enterprises</text>
</item>
<item name="Cost">

<number>21.95</number>
</item>

</document>
</database>

This follows the structure of the DXL DTD. The <database></database> tags contain all the other data. Each 
document is defined by <document></document> tags, and each data field within the document by a nested set of 
tags—<item name="n"></item> and within that a pair of tags that define the data type—in this example 
<number></number> or <text></text>.

The Import Data - SAX agent opens the data file, newitems.xml, as a NotesStream object and submits it to a SAX 
parser which reformats the data as DXL, then pipelines it to a DXL importer.

'Open data file as NotesStream
Dim stream As NotesStream
Set stream = session.CreateStream
If Not stream.Open("c:\dxl\newitems.xml") Then

Messagebox "Cannot open c:\dxl\newitems.xml. Check to make sure this directory exists.",, "Error"
Exit Sub

End If

'Create the SAX parser
Dim saxParser As NotesSAXParser
Set saxParser=session.CreateSAXParser(stream)

'Create the DXL importer
Dim importer As NotesDXLImporter
Set importer = session.CreateDXLImporter(saxParser, db)

The number of event handlers has been reduced to a bare minimum: 

On Event SAX_StartElement From saxParser Call SAXStartElement
On Event SAX_EndElement From saxParser Call SAXEndElement
On Event SAX_Characters From saxParser Call SAXCharacters
On Event SAX_EndDocument From saxParser Call SAXEndDocument
On Event SAX_StartDocument From saxParser Call SAXStartDocument

On Event SAX_Warning From saxParser Call SAXWarning
On Event SAX_Error From saxParser Call SAXError
On Event SAX_FatalError From saxParser Call SAXFatalError

The SAXStartDocument handler copies the XML declaration and <database> tag into the output:

Sub SAXStartDocument (Source As Notessaxparser)
Source.Output({<?xml version='1.0' encoding='utf-8'?>} + Chr(13)+Chr(10))
Source.Output({<database xmlns="http://www.lotus.com/dxl" version="6.0">}_
+ Chr(13)+Chr(10))

End Sub

The corresponding SAXEndDocument handler closes both these tags.

© Copyright IBM 9



Lotus Developer Domain: LotusScript: More XML classes Notes/Domino 6
www.lotus.com/ldd/today.nsf

The key events are those that start and end elements. The SAXStartElement handler does most of the heavy 
lifting. It uses a Select Case statement to process the items returned by the parser based on the element name:

Select Case ElementName

If the element is named newitems, the container element for the data, it is ignored:

Case "newitems"
Exit Sub

If the element is a named <item>, then the subroutine writes a <document> tag that includes the alias of the Notes 
form the document displays in, "OF." Then it transforms the attribute sku into a named item, <item name="SKU">, 
and wraps the attribute's value in a <number> tag to set its data type:

Case "item":
Dim i As Integer
Source.Output({<document form="OF">})
Dim attrname As String
For i = 1 To Attributes.Length

attrname = Attributes.GetName(i)
If Attrname="sku" Then

Source.Output({<item name="SKU"><number>} +Attributes.GetValue(attrname) + {</number></item>})
End If

Next

The element named <description> is transformed into its counterpart in DXL, an item named Item, and an opening 
<text> tag is written to prepare for the character data that will follow. The data type tag is written here rather than 
in the SAXCharacters handler because the parser doesn't distinguish between data types, and we only know what 
the type of character data should be because of the item name that precedes it:

Case "description":
Source.Output({<item name="Item"><text>})

The price element is handled separately because its value has a <number> data type:

Case "price":
Source.Output({<item name="Cost"><number>})

And finally the Catch-all Else handles other items that appear in the data (in this data file the only match to Else is 
the item named manufacturer). The element name is converted to proper case and used as the name attribute of 
an item of data type <text>:

Case Else
nameProper$ = Strconv(ElementName, SC_ProperCase)
Source.Output({<item name="} + nameProper$ + {"><text>})

End Select
End Sub

The SAXEndElement handler uses another Select Case statement to write the proper closing tags to each 
element:

Select Case ElementName
Case "newitems"

Exit Sub
Case "price":

Source.Output({</number></item>})
Case "item":

Source.Output({</document>})
Case Else

Source.Output({</text></item>})
End Select

End Sub 

© Copyright IBM 10



Lotus Developer Domain: LotusScript: More XML classes Notes/Domino 6
www.lotus.com/ldd/today.nsf

The output of the SAX parser is pipelined to the DXL importer, which creates new documents in the database for 
the two new items, Computer screen cleaning kit and Stainless steel stapler. Note that the Notes documents for 
these two items include two fields that came from the XML input aren't present in the other documents in the 
database—SKU and Manufacturer.

Producing other formats
The examples in this article have focused on transforming DXL to and from other XML languages. But it should be 
obvious by now that you can use all three of the parser tools—SAX, DOM, and XSL—to produce text in any 
format.

You can see some glimpses of what the new LotusScript XML support makes possible in the Designer help file 
code examples. A search for Examples: NotesSAXParser class in help will bring up an agent that displays a 
Messagebox for each SAX event as it processes an XML file. The example code for the NotesDOMParser class is 
an agent that produces a text report on the nodes it finds in the DOM tree it constructs from an example XML file.

We have done very little with the metadata that DXL exposes, but there's a wealth of data available as DXL that 
can be mined for purposes like knowledge management: Who is the most active contributor to the database? Who 
has contributed most recently? What trend do the access dates for the documents show—customer activity, 
employee productivity, revenue generation? The parser tools have great potential for reporting applications.

Conclusion
The XML support in LotusScript gives Domino developers an important new set of tools for using the most 
important existing standard for exchanging data between applications and systems. This article couldn't possibly 
teach you everything you need to know about DOM and SAX and XSL. But it can provide you with an introduction 
to how to use LotusScript to work with XML, and some code examples to get you started—importing and exporting 
data as DXL, the Domino XML language, and translating DXL to and from other XML languages using the DOM 
parser, SAX parser, and XSL transformer. The XML classes, together with the already rich features of LotusScript 
and the access DXL provides to the elements of the Domino database—both data and metadata—make 
LotusScript a powerful tool for data exchange.

ABOUT THE AUTHORS
Sally Blanning DeJean and David DeJean have been working with and writing about Lotus Notes and Domino for as long as 
they've existed. They were co-authors of the very first book about Notes, Lotus Notes at Work. Sally, a CLP Principal, has written 
other books about Notes and is a full-time Notes/Domino developer. David, a CLP, has been an editor and writer for several 
computer publications. He is a partner in DeJean & Clemens, a firm that develops Notes and Internet applications and technical 
and marketing communications.

© Copyright IBM 11


