

by
David
DeJean

Level: Intermediate
Works with: Designer 5.0
Updated: 09/01/2000

"Hide-whens" have a real personality. They are one of the most important
tools in a developer's kit for building a quality user interface for a Domino
application. Hide-whens can improve the user interface (UI) of an application,
smooth out display differences between Notes clients and Web browsers, and
help custom-tailor document contents to their readers. But sometimes
hide-whens seem to have a mind of their own. Judging from the number of
postings to Notes.net discussions, hide-whens can sometimes be a cause of
frustration.

This article explores the ins and outs of using hide-whens, discusses some
examples, and offers suggestions for some of the problems you may
encounter. It assumes a solid understanding of using Domino Designer R5 to
develop Notes/Domino applications.

Hide-when basics
Frustration with hide-whens may arise, in part, because they require some
reverse thinking. Most Notes formulas are by their nature "show-whens"—the
formula displays something to the user. Hide-whens typically prevent the
display of something. Another problem is that while developers tend to think
of their application's UI object-by-object, hide-whens don't work
object-by-object, they work paragraph-by-paragraph. And finally, hide-whens
don't work the same way for all objects. Hide-whens typically apply to a field
and its contents. But in a rich text field, for example, hide-whens can be
applied to subsets of the field's contents. Changes in settings can ride into the
field on pasted text or graphics. While this is usually the right thing for the
content, it can be a surprise for you.

Hide-whens are invoked by the evaluation of a condition that takes the form if
(A) then hide (B). For example:

If the document is in Read mode, then hide this field.l

If the field TotalSales is empty, then hide this field.l

If the client type is "Web," then hide this form.l

If the reader is not the next approver, then hide this button.l

Hide-whens allow you to manipulate what appears in the UI of the application
based on the state or properties or contents of the object the hide-when
formula is applied to. Almost anything in the UI can be hidden—fields,
buttons, text, or graphics on forms. (The major exceptions are rich text fields
and tables, which are discussed later in this article.)

Hide-whens are invoked in the object's properties box; the Hide tab is the one
with the window shade. The most common reasons for using a hide-when can
be selected on this tab:

© Copyright 2000 Iris Associates, Inc. 1

Revealing the hidden secrets of "hide-when" "Iris Today" webzine at http://www.notes.net

Check any of the boxes, and the paragraph containing the object will be
hidden when that condition exists. The options on this tab have become more
elaborate as Notes features have proliferated. It now allows you to:

Hide the paragraph from Notes or the Web – These choices help l
enhance the application's compatibility with particular clients. You might
hide a file-upload control from Notes clients, and hide a rich text field
intended to hold file attachments from Web users.
Hide the paragraph when the document is previewed or opened for l

reading – These choices can conceal elements when the document is in
Read mode that are used only when the document is in Edit mode or
used only by the application's developer.
Hide the paragraph when the document is previewed or opened for l

editing – These choices can hide elements used only in Read mode.
When used with the Read mode choices, they let you give users interface
devices that help them enter data while the document is being edited, and
then hide those interface devices so that the data is presented as simply
as possible in Read mode.
Hide the paragraph when the document is printed or copied to the l

clipboard – These two choices are gentle enforcers of security for
sensitive information. (They work only in Notes clients, of course, not in
Web browsers.) They don't make it impossible to extract data from a
Domino application, but they make it more difficult.
Hide the paragraph when the formula is true – This allows you to l
specify hide-when conditions that are specific to your application, using
the full range of fields and properties. You can use @functions and
formulas that base conditions on the ACL or the contents of other fields.

Three major uses for hide-whens
In Notes applications, there are three major uses for hide-whens. All of them
are related to giving the application the best possible user interface, which
means presenting appropriate information as simply and clearly as possible
and helping the user understand the range of possible actions:

State-related – Used when the designer wants to present a field in one l
format if the document is open in Edit mode, but in another format if the
document is in Read mode.
User-related – Used when content must be hidden from some users but l
displayed for others, based on user roles.
Client-related – Used when a feature works on one client but not on l
another, for instance, rich text fields in the Notes client versus in a Web
browser.

There are some alternatives to hide-whens for particular uses; computed
subforms is one example. And finally, there are limits to what hide-whens will

© Copyright 2000 Iris Associates, Inc. 2

Revealing the hidden secrets of "hide-when" "Iris Today" webzine at http://www.notes.net

hide, and how effectively they hide it. More on that later.

State-related hide-whens
Perhaps the most common use for a hide-when is to give the user the gentle
guidance of a UI control when they're entering data into a form, and then to
hide that control when the saved document is opened for reading. You might
want to give users a set of radio buttons to choose a department name when
they're creating or editing a document, but just display the name of the
selected department when the document is opened for reading.

To do this, you create two fields on the form, one directly above the other. In
Designer, these fields look like this:

You create the DepartmentEntry field as an editable set of radio buttons. You
set the DepartmentDisplay field to be plain text of type Computed for Display
with its default value set to the field name DepartmentEntry.

On the Hide tab of the properties box for the DepartmentEntry field, select the
hide-when options to keep the radio buttons from being displayed when the
document is in Read mode:

Then select the DepartmentDisplay field and do the opposite; select the
hide-when options Previewed for editing and Opened for editing:

© Copyright 2000 Iris Associates, Inc. 3

Revealing the hidden secrets of "hide-when" "Iris Today" webzine at http://www.notes.net

Note: As an alternate to setting the field properties, you can achieve exactly
the same affect by selecting each text label that says Department and setting
its hide-when properties. Or you can select the entire paragraph and set its
text properties. This can be a source of some confusion; just remember that
when you set properties for a field or a label—any part of a paragraph—the
settings affect the entire paragraph. In this case, the labels are on the same
lines as the fields, so they're part of the paragraphs and take on the field
properties.

The result of these selections gives users guidance in choosing one and only
one department by using a panel of radio buttons when the document is being
created or edited (as shown on the left below), but displays their choice much
more simply and takes up much less space when the document is being read
(as shown on the right):

This simple technique can make a big difference in the appearance of
documents as users toggle between Edit and Read modes. A similar use of
hide-whens can help reduce the clutter of UI gadgetry in documents being
edited. If the data or selections can be categorized, you can let the user
choose the category, and then display only the relevant items.

Here is an example of cascading selections that uses a dialog list field named
InterviewSelector to let the user pick a subtopic within a Help Desk trouble
report form. The fields for each subtopic are hidden until the user selects that
subtopic—either from the InterviewSelector list or via a button that calls the
next list choice.

First, create the dialog list field InterviewSelector and enter the names of the
subtopics as the list choices. Be sure to select the "Refresh fields on keyword
change" checkbox.

© Copyright 2000 Iris Associates, Inc. 4

Revealing the hidden secrets of "hide-when" "Iris Today" webzine at http://www.notes.net

To make the form open in the proper state (with the first item in the list
selected), give the field this default value:

@If(@IsNewDoc; "1. User"; InterviewSelector)

Then add the appropriate fields for each subtopic to the form, one below the
other, spaced with blank lines as needed for appearance. Set the Hide
formula for each of these fields (and any blank lines below it—this maintains
alignment) so that they are hidden unless the corresponding subtopic is
selected in the InterviewSelector field. For example, the Hide formula for the
user information fields—for example, User, Location, Phone, Email, and
ContactInfo—would be:

InterviewSelector != "1. User"

And the Hide formula for the problem type fields—for example, ProblemType
and ProblemComments—would be:

InterviewSelector != "2. Problem type"

A section of the form looks like this:

© Copyright 2000 Iris Associates, Inc. 5

Revealing the hidden secrets of "hide-when" "Iris Today" webzine at http://www.notes.net

The buttons, like the one that says Next: Problem type, perform the same
function as the InterviewSelector list—they reset the value of
InterviewSelector to the next subtopic, and then refresh the Hide fields to
reveal the next set of data fields. They provide the user with easy, orderly
navigation of the form. The user can step through the form using the buttons,
or pull down the InterviewSelector list to return to a previously visited section.

The button code consists of two simple actions created in the Click object. For
the button labeled Next: Problem type in the illustration above, the first action
resets the value of InterviewSelector to 2. Problem type:

© Copyright 2000 Iris Associates, Inc. 6

Revealing the hidden secrets of "hide-when" "Iris Today" webzine at http://www.notes.net

The second action runs an @command that refreshes the document's fields
so that the hide-when formulas are evaluated:

When the user creates a new document, the form opens on the first subtopic:

When the user completes the user information section and clicks the Next:
Problem type button, the fields that are displayed for the user change to the
second subtopic's fields:

© Copyright 2000 Iris Associates, Inc. 7

Revealing the hidden secrets of "hide-when" "Iris Today" webzine at http://www.notes.net

The hide-whens yield a visually simple, organized application that collects
data into a single document. It guides users through the required steps in
logical order and doesn't overwhelm them with a long, cluttered form they
must scroll down to complete.

User-related hide-whens
Hide-whens are frequently used to give different groups of users different
views of the data in a document, or to tailor a document to its current user.
Here's the top of a form from a purchase-order system that uses workflow for
approvals:

When a user creates a new document, her name is automatically filled in. She
selects the department the PO will be charged to from a drop-down list, and
chooses first- and second-level approvers also from drop-down lists—a
department director for the first level approval and a vice-president for the
second.

Here is the design for the same section of the form:

The simplicity of the visible UI contrasts with the complexity of the application
design. Hide-whens are used extensively to maintain this simplicity, yet allow
the application to be as flexible as possible. A document created with this
form can have three states: it can be saved as a work-in-progress, it can be
saved as ready to submit, or it can be saved and submitted. The save step is
obviously crucial, and much of the programming in the form is keyed to the
save action. Three of the fields on the right side of the table are filled in by
querysave operation: the PONo field is a computed look-up into another
database that returns the next available PO number, and the DirAmt and
VPAmt fields are also populated by computed-when-saved lookups that enter
the amount of money each approval has signing authority for. If the amount of
the PO entered further down exceeds these limits then the Thirdapprover
field—for a senior vice-president—is made part of the workflow and the user
is prompted to select a third approver.

The top two rows and the bottom row of the table are hidden until the
document is saved. If items and prices have been entered (lower down on the
form) and the save action verifies that the PO is ready to submit, then the
Submit button, the PO number, the Link to Requisition and Cancel PO buttons
appear. (Link to Requisition, if clicked, lets the user choose a requisition
document from a list of existing requisitions. A doclink to the requisition
appears in the POBody field in the top row of the table.)

If the Submit button is clicked, the SubmitDate field is filled in, e-mail is sent
to the first approver, and the Ready field, a flag field, is set to Yes. The
hide-when formula on the Submit button won't allow the button to appear if
Ready is Yes, which prevents a PO from being submitted more than once.

© Copyright 2000 Iris Associates, Inc. 8

Revealing the hidden secrets of "hide-when" "Iris Today" webzine at http://www.notes.net

The table serves a valuable function here, because objects in individual table
cells can be hidden or revealed. Otherwise the entire line—or
paragraph—would be affected.

It's important to understand that using hide-whens to hide data removes it
from the display, but it does not remove it from the document. All the fields in
the document and their contents continue to be visible in the document's
properties box.

For example, it's common for a developer to hide fields from both authors and
readers by checking off all the properties box's hide-when options. You might
do this for fields that hold temporary or intermediate values. But be careful.
You may use sensitive information like salaries only for calculations, and hide
it in both Edit and Read modes:

But the field still exists in the document, and even though it doesn't display in
the document it is still reported in the Document properties box:

The moral of this story is this: don't depend on hide-whens alone. The only
way to absolutely hide content in a Notes database is to set the Readers and
Authors properties in the Security tab of the form's properties box, or add
Readers and Authors fields to the document itself. The purchase-order
application, for example, has a complex reader's field that restricts access to
documents by department, based on department numbers, ACL groups, and
individuals named in the document:

@If(DeptCode =
"ADFG":"ADFH";Proposer:VP:Director:CFO:"[President]":"[CEO]":"
Company Counselors":"Purchase Order Readers":"Tim Pennington";
@If(DeptCode =
"EMEM";Proposer:CFO:"[PresAdmin]":"[President]":"[CEO]":"Purchase
Order Readers";
@If(DeptCode = "EMEN";Proposer:CFO:"[CEO]":"[President]":"Purchase

© Copyright 2000 Iris Associates, Inc. 9

Revealing the hidden secrets of "hide-when" "Iris Today" webzine at http://www.notes.net

Order Readers";
"")))

For POs submitted from most departments, reader access is controlled by the
settings in the Form properties box. This formula further restricts reader
access to POs from four departments.

The surest way to hide data in a Domino application is to use a readers field
in the documents that include the sensitive data. Only the persons or groups
defined by the readers field will have access, and all other users will be
denied. Users who do not have access to a document will not see it listed in
views. If you want to make sure users are unaware of the categories of
documents they cannot access, set the properties for each view in your
application to "Don't show categories having zero documents." (It's on the
Advanced tab of the View properties box.) This feature is new in Release 5.

Client-related hide-whens
Making an application's UI work in both Notes clients and Web browsers can
require a great deal of hide-when work. UI features that work in one client
may not work in the other. For instance, Notes supports tabs, but Web
browsers don't. Attachments go in a rich text field in Notes, but they require
an upload control in a Web browser.

If the application is simple enough, a single form can handle both clients.
Release 5 of Domino has made it easier by adding an @function,
@ClientType, to make it simple to evaluate the user's client platform. You can
hide design elements by writing hide-when formulas that evaluate the client
type.

If you design elements specifically for one client or the other, you can enforce
your choice by hiding the element from the client it isn't designed for in that
element's design properties box. In Designer, right-click on the element's
name and choose Design Properties. Then select the Design tab of the
properties box (T-square and triangle) and under "Hide design element from"
select either the Notes clients or Web browsers. This works for virtually all
design elements—outlines, framesets, pages, forms, views, folders,
navigators, and resources.

Additionally, scripted events can help adjust forms for compatibility with
different clients. Release 5 provides new events, WebQueryOpen and
WebQueryClose, to allow you to script additional processing of forms
intended for browsers.

© Copyright 2000 Iris Associates, Inc. 10

Revealing the hidden secrets of "hide-when" "Iris Today" webzine at http://www.notes.net

There comes a point, however, when the complexity of what's hidden and
what's revealed makes it simpler to create separate forms for each client, or
to use a computed subform to deliver the right UI to the right client. The
simplest approach is usually to create two parallel paths through the
application's architecture—one set of forms and views for Notes clients,
another for Web browsers, both sharing the same documents.

The easiest way to start the user down the right path is to use the Launch
options in the Database properties box. Launch the database on the Web by
opening any one of the possible options—a frameset that contains a
Web-friendly view, perhaps, or a page that serves as a home page for the
application on the Web. Make your choice from the list that opens under
"When opened in a browser" on the Launch tab:

There is one "gotcha" you need to keep in mind when hiding elements from
particular clients. You can't hide fields from browsers if you want their values
to be accessible to JavaScript or CGI scripts. It's common to pass a value in a
pure HTML form while hiding it from users:

<INPUT type=HIDDEN name="metasearch" value="yes">

If you use a hide-when to hide a field from the Web in a Domino application,
however, it is omitted from the HTML page generated by Domino.

Hide-when exceptions
Just about any UI element can be hidden in a Domino application. There are
two exceptions, and they are the source of most problems with hide-whens in
complex applications: rich text fields and tables.

The problem with both is that they can contain elements that can be
independently hidden or revealed, so the magic of hide-whens can't work
reliably on them. For each element, Domino makes compromises in order to
"do the right thing."

No hocus-pocus for tables, but...
For tables, the compromise is to do nothing at all. A table can't be hidden.
There is no Hide tab in its properties box. But Domino does the right thing for
the contents of individual cells: it treats them as paragraphs. A field in a table
cell can be hidden or revealed. Multiple paragraphs within a cell can be

© Copyright 2000 Iris Associates, Inc. 11

Revealing the hidden secrets of "hide-when" "Iris Today" webzine at http://www.notes.net

individually hidden. Domino does the right thing with table rows, as well: when
all the contents of a row are hidden, the row itself is hidden and the space it
occupies is closed up. Because the right thing for table columns is harder to
predict, the Domino compromise is to not close up the column space if all its
contents are hidden.

The effect is that you can hide a table by hiding everything within it. But if a
row of the table is visible, all its columns are visible, even though the contents
of some cells may be hidden.

For rich text fields, keep it simple
Nowhere does the logic of "the right thing" for hide-whens become more
twisted than in rich text fields. Unlike tables, you can hide rich text fields. But a
hide-when for a rich text field is really more of a suggestion than an absolute
imperative. The reason is that paragraphs within a rich text field can be given
hide-when attributes different from the field as a whole. Notes applies these
attributes from the outside in: if an element inside the field contradicts the
properties of the field itself, the element wins and the field is displayed in
accordance with the properties of the element.

This is all in the name of doing the right thing by the content. The displayed
result may be right for the content but a surprise for the developer. It is
possible to pretzel the logic of a rich text hide-when to the point that the
element that is forcing a field to display is itself hidden.

Even if the contents of a rich text field can be expected to behave themselves,
hiding the field can still be problematical. Using a hide-when depends on
being able to evaluate a condition. The simplest conditions are no
problem—is the form in Edit mode or Read mode? But anything more
complicated usually depends on evaluating the contents of the field itself. The
most common test is usually to see if the field has contents, and hide it if it
doesn't:

ThisField = ""

This works fine for text fields, but not for rich text fields, which do not evaluate
to empty. A common workaround for rich text fields that are guaranteed to
contain text is to use a flag field (we'll call it FlagField) and the @Abstract
function. Create a computed text field and give it the formula:

@Abstract([abbrev]; 200; ""; SomeRichTextField)

Then you can give the rich text field named SomeRichTextField the hide-when
formula:

FlagField = ""

This works only if the document has been saved, since rich text fields are not
part of a document until it has been saved. And @Abstract doesn't work, of
course, if the contents of the rich text field are something other than text.

The best solution for these situations is to avoid them. Don't use rich text
fields in an application unless you must, and don't apply hide-whens to the
few that you use unless you can be sure that the contents of the field will
always be what you expect them to be.

Put a space in front of it
There is one more workaround for problems with hiding rich text fields that
needs wider distribution. If you can't get a rich text field to hide no matter what
you do, put a space in front of it. Lotus Customer Support Technote
#158231 reports:

"When a rich text field is the first item on a line and the form is saved before

© Copyright 2000 Iris Associates, Inc. 12

Revealing the hidden secrets of "hide-when" "Iris Today" webzine at http://www.notes.net

hide attributes are added to this field, hide attributes added to this field later
will not work. If text, even a blank space, or another field is placed before the
rich text field on the line, the field will then hide properly."

Sections are similar
The logic of "the right thing" in sections can seem illogical, too. You can hide
a section, the same way you hide any other object on a form, but it does a
sort of Cheshire Cat act—parts of it hide, but parts of it stay in plain site.
Here's an example:

You create a section that contains a few fields. In the Hide tab of the Section
properties box, you write a formula to hide the section based on the value of a
field above. When this section's formula evaluates to true the section title will
be hidden. But all the fields within the section will remain visible. Is there logic
in this? Yes. The reason is that on a form fields are not actually contained
within a section: they aren't child-objects of the section object, they are
child-objects of the form itself. So while you might expect them to inherit the
properties of the section, they don't. You have to set them all individually.
Fortunately, you can do this in one shot—highlight the entire section (fields as
well as the section title), click the Properties SmartIcon, and then add the
same hide-when formula as the section has to the Hide tab of the Text
properties box.

Other hide-when tips and techniques
Hide-whens seem to show more of their capricious personality when used in
tables: The Notes/Domino Gold Release Forum regularly carries posts from
developers seeking a solution to problems with wandering hide-whens that
move from cell to cell, or a runaway hide-when formula that replicates itself in
every cell. The connection with tables, however, is tenuous, because similar
problems can occur even when there are no tables involved. Experience
indicates that the problems are most likely resource-related: the more
complex a form gets, and the longer the editing session goes on, the more
likely problems are to occur. The best advice seems to be to make sure your
PC has plenty of available memory and system resources.

If you're having trouble with hide-whens, whether in tables or not, try these
tips, many of them gleaned from the Gold Release Forum:

Create and position all the fields in the form before you attempt to set l
their hide-when properties. Adding new fields and text, cutting and pasting
to rearrange a form, adding or deleting table rows—all these things
change the relationships between design elements and paragraphs,
which can change the hide-when properties of the elements involved.

Make sure your problem isn't "pilot error." Make sure that elements that l
are supposed to have hide-when properties or formulas do indeed have
them and that those that shouldn't, don't. If you add or move fields,
recheck to make sure the proper formulas are still there. If you insert
paragraphs or elements, make sure they haven't inherited hide-when
attributes from "parent" paragraphs.

If you create a formula in the "Hide paragraph if formula is true:" box, be l
sure the checkbox is also selected; the formula won't be recognized until
the box is checked. If you uncheck the box, be sure to also delete the
formula; a formula, once recognized, may continue to be recognized until
it is removed, regardless of the state of the checkbox.

Save the form frequently as you work on it. If you suspect that your l
machine is resource-bound (if your fonts occasionally vanish, or windows
won't open or close, or applications lock up), conduct your Designer
session on as clean a machine as possible. Shut down all nonessential
windows and applications. It may help avoid problems to periodically shut
everything down and restart your PC regularly within your editing session.

© Copyright 2000 Iris Associates, Inc. 13

Revealing the hidden secrets of "hide-when" "Iris Today" webzine at http://www.notes.net

As you work, make copies of the form so you can revert to a recent l
version if necessary, and when you finish, make a safe backup of the
working form.

In extreme cases, save after each formula change.l

If you are having trouble with hide-whens not working, compact the l
database. (Even if it doesn't work, it gives you a quiet minute or two of
meditation to slow your heart rate and calm your breathing.) If the
formulas appear to be correct but the form still is not working, try deleting
formulas, saving the form, then recreating the formulas a few at a time.

Conclusion
Hide-whens are an important tool for creating an optimal user interface for a
Domino application. They allow the developer to tailor a form to the needs of
the user, whether reading or editing, and to the capabilities of the client. But
hide-whens add another layer of complexity to forms that are often already
complex. The results can push both Domino and the developer to their limits.
Understanding those limits, and making sure the simple structures of the form
work before adding complexity, are the key to a good results.

© Copyright 2000 Iris Associates, Inc. 14

