Creating field help for your Domino applications (part 2)
by Mark Gordon and Micah Blalock

[Editor’s note: This article resides in “Iris Today”, the technical Webzine located on the http://www.notes.net Web site
produced by Iris Associates, the developers of Domino and Notes. This is the second article in a two-part series on
how to create context-sensitive field help for your Domino applications. This article focuses on how to create reusable
help topics, and looks at an alternative field help solution for Netscape 4.x browsers. The first article showed you
how to provide field help in a separate help frame, basic field help that appears when users tab into a field, and pop-
up help.]

When designing your Web applications, field help may seem like one of those non-essential "extra’'s." However, it's
an "extra" that your users will really appreciate! You may not realize that you can easily create field help that does
more than display in the status line of a browser. This article shows you some techniques for making field help show
up in any font and size you like so that users can't miss it.

In the first article in this two-part series, we introduced you to three techniques for adding field help to your
applications. First, we showed you how to easily incorporate a small help frame at the bottom of your forms, without
needing to redesign your application to account for frames. Our second technique demonstrated how to create basic
field help that displays when users tab into a field, or move their mouse over a field label. Finally, we showed you how
to add pop-up help windows to your application for displaying longer help descriptions.

In this second article, you'll learn about two additional field help techniques. We'll first look at how to create field help
that you can reuse for multiple fields in your application. The technique works by storing the help text separately.
You'll also learn how to use Domino to generate portions of the JavaScript for you. Then, the final technique we'll
cover is an alternative field help solution for Netscape 4.x browsers, which have a tabbing problem when JavaScript
is used in field events. Our work-around shows you how to generate different JavaScript calls for different browsers.
All the examples we'll discuss are working examples you can try by downloading our sample database.

Downloading the sample database

You can try out the techniques described in this article by downloading the following self-extracting database
(211Kby):

EI

fieldhp2.exe

You can refer to this database as you read through the rest of this article, and then use it to create field help in your
own applications. For information on how to use this database to create your own field help, see the sidebar "Quick
steps to adding field help to your applications.”

Reusing field help

When you begin creating field help for your application, you may find that you have similar fields that could display
the same help text. For example, you might want to display the same tip on formatting a phone number -- such as
"area code first please" -- with multiple phone number fields, fax number fields, and so on. In the first article, we
used the FrameHelpText function to directly display any help text. This time, we'll use the FrameHelpKey function
(also defined on the Register form), which is very much like the FrameHelpText function, except that it uses reusable
field help to display help text in the help frame. It accepts a help "key" argument, rather than directly passing the help
text into the function. For example, here is what the HTML Attributes formula looks like for the Phone field, which
uses a reusable help topic called Phone:

HelpKey := "Phone";
"onFocus=\'FrameHelpKey(\"" + HelpKey + "\")\""

Before we discuss how the FrameHelpKey function works, let's take a look at how we create and maintain the
reusable help text. We first define a help topic form, which the developers and/or application owners can use to
define and maintain reusable help topic documents. For example, here's a help topic document for the e-mail field:

Eie Ed Wew Doowo fetorn e bob
M‘i‘_’tﬂ_ﬂ'fl? o T

el

I._,_g,._ eniey & vabd inl

o g s o sl e B

Fangle-lmy Halp

Pogup Help
aboul B s180uS of Our DIt
Thes corteri] of Sus AW Ao BUEYE

Help Topic

Farms Whoee Aagister, Customar. Ermployee
Uaad ek s rbarac i s B el B o
Halp Koy E-.—,:.:

i B ol

Wie will <bxnotebs groe his address oul 1o amyone else. butw

Y] ey .

4 i e baig b

W e it ho oonbadcd vou

|

o S

4

Notice that we've defined this topic to be used on three forms: Register, Customer and Employee. (The Customer
and Employee forms don't exist in the sample database.) We'll then reference the following categorized view to bring

the appropriate help data into each form:

. Helg Yau Can Upe - Helg Topica - Lobus Molen

'Ea.:aw-:-uwn’rhﬂlh

g ‘Eﬂuf’fl_’! Eﬁggj e Lell Ead BIEEE e I

- ﬁ Higdgr o s

Pogpasp Tt
e will Chanot e gra e

W vl Chorete b gras

3 v This wall aliow us 1o relesn

= Customer
T Emcsl
%, el Tageca s
% Arisstions !umqﬁlnma
¢ doeeis Eenal
P B Dean I e
= Register
Frons
Ernal
ESoltiame

Floaso mclude: <hoountr
Wi wall Chrete b groa
This wall alicw us 10 relea:

=¥ Wk -

When the form is sent to the browser, we load the help topics associated with that form into a set of JavaScript
arrays. We can then manipulate those arrays on-the-fly to display the appropriate line of help text or pop-up text in
the help frame or pop-up window. Before we discuss how to get this data from the view into a set of arrays, let's look
at how this type of array works in JavaScript.

JavaScript arrays are extremely flexible. You can define them as named arrays, in addition to the more traditional
simple integer arrays. If we were to hard-code the definition and population of the data you see in the above view, we
might do it with the following code. Notice that the HelpLines array holds the single-line help text, while the
HelpPopups array holds the pop-up text that is shown when the user clicks on the More Info link.

var HelpLines = new Array;

HelpLines["Email"] = "Please enter a valid Internet e-mail address";
HelpLines['SellName"] = "Check this box if you want to allow us release your name";
HelpLines['Phone"] = "Area code first, like this: (317) 555-1212.";

var HelpPopups = new Array;

HelpPopups['Email"] = "We will not give this address out to anyone else, but will use it to contact you about
the status of your order.";

HelpPopups|['SellName"] = "This will allow us to release your name to other firms selling products we believe you
would be interested in hearing about.";

HelpPopups['Phone"] = "Please include country code (if outside the United States) and an extension
if applicable.";

The arrays contain the help text for the three reusable help topics on the Register form. Of course, we don't have to
hard-code the JavaScript; we are going to let Domino generate it. But first, assuming we have coded the arrays as
shown above, let's look at how the FrameHelpKey function uses the data defined in those arrays.

Here again is the HTMLAttributes formula for the Phone field:

HelpKey := "Phone";
"onFocus=\'FrameHelpKey(\"" + HelpKey + "\")\""

Domino uses that formula along with the field definition to generate the field in HTML format, like this:
<INPUT NAME="Phone" onFocus="FrameHelpKey("Phone")">

The FrameHelpKey function uses the Phone parameter (passed in as an argument named key) to write the
appropriate line of help text from the HelpLines array to the help frame (only the relevant portion of the
FrameHelpKey function is shown here):

function FrameHelpKey(key) {
window.parent.HelpFrame.document.write("<Center>" + HelpLines[key]);
/I Pull the message from the HelpPopups array, and generate it as a hard-coded parameter in the showHelp call on
/I the popup window.
if (HelpPopups[key] == ") {
window.parent.HelpFrame.document.write("</Center>");
/I Close out the formatting tags since there is no More Info link to be shown
}else {
window.parent.HelpFrame.document.write (" -- ");
window.parent.HelpFrame.document.write("<A HREF='JavaScript:top.MainFrame.showHelp(\
+"\")'>");
window.parent.HelpFrame.document.write("More Info</Center>");
window.parent.HelpFrame.document.close();
}
}

"

+ HelpPopups[key]

This function also passes the appropriate pop-up help text from the HelpPopups array to the showHelp function,
which creates the pop-up window.

Let Domino generate the code for you

Now back to the real challenge: dynamically loading the arrays with data from the HelpTopics view, instead of hard-
coding each element in the array. We load the arrays using a combination of Domino and JavaScript. If you look at
the "Field Help JavaScript" subform, just above the <script> tag, you'll see a computed-for-display field called
HelpKeysThisForm:

o Field Help J svaSonpt - Subloem - Lotus Moles

LB Ed Mew Cresle [esgn
_@»f%ﬂ:ﬂ'ﬁg]ia fr_HEi.a@E'rHtl a1)

Thiz werzian dics't b e popup parm o Framekeip Tex i'
E | Thes haa s ||D1|:|u'5", thia HTML Bt is absens hicddes thiough hidemwhes loemulas

<5Cnpt=

warl= docurrant feems[0]
' Sef tha targat of echions on the om fo opan e nod page oulside the frames (we don'twand the help ll
Diefires: | HeichesnThoafom (i) =l Event [vaie =1

Rart (T Sergie peteiz] 6 Fomly [Sespd [Shioew beseabat

= @DblLookup ("Notes™: "Nocache®, @DbMame; "HelpTopics®;
FoemHelpkey: 2):
ol (EolsErren); MULL; x)
Frskdt: b Fursfiser. . I

Hey T B Hiden " e s [

This field makes the list of help keys for the current form -- in this case Email, SellName, and Phone -- available in a
Notes computed-for-display field for use by other computed field formulas.

Notice that we didn't say that this computed-for-display field makes those values available for use in our JavaScript
code. It doesn't, at least not directly. Remember, JavaScript has access to fields defined on an HTML form, and
computed-for-display fields generate what the browser sees as static text. If a hide-when formula is enabled, as it is
here, the data isn't sent to the browser at all. However, it is available to other Notes field formulas on the form.

So, we have this computed-for-display field called HelpKeysThisForm, which calculates the help keys used. We can
use a second computed-for-display field within the JavaScript code itself, a formula that references the keys
calculated by HelpKeysThisForm to generate the code required to populate an array. Remember, the data calculated
in a computed-for-display field is sent to the browser as static text for the browser to display or interpret. If that "static
text" happens to be between the tags <script> and </script>, the browser's JavaScript interpreter attempts to parse it.
So, all we need to do is calculate, in a Notes formula, the JavaScript code with the correct syntax to populate the
HelpLines array! Remember, this is the JavaScript we want to have Domino generate:

var HelpLines = new Array;

HelpLines["Email"] = "Please enter a valid Internet e-mail address";
HelpLines['SellName"] = "Check this box if you want to allow us release your name";
HelpLines['Phone"] = "Area code first, like this: (317) 555-1212.";

Actually, we'll hard-code the declaration of the array, and call the computed-for-display field PopulateHelpLinesJS:

L Fiedd Halp JaesSicoipt - Subdoam - Lobus Notes

tlml?maﬂ-s:umus:}'m| =] Event [vae =]

Ru (7 Sivgde sctoeic] f0 Fomadn T Soipt [T Shos browest

REM "Ganarate the JavaScript to assagn the help ine values to the amay slameants”,
= @0bLowmup ("Notes™ "Nocache' @OoName. "HepTopics"™ FomsHalpkey: 3)

Lines = & [GIsEmon:); NULL: =)

REM "Let the list pracassing featuers of Notes tum that list of help lines into a list of

bavaScript”,

REM “array assigrment statemants .

dEmplode (“HelpLimes]™ + HelpkeysThisFomm « '%°] =" + Lines « """ @Newline)

Fidds & Funahions .. ;

Heke <1 HiML | T Ak AT]

Here is the formula for the PopulateHelpLinesJS computed-for-display field:

REM "Look up the help lines for this form";

x := @DbLookup ("Notes": "Nocache"; @DbName; "HelpTopics"; Form; 3);

Lines := @If (@IsError(x); NULL; x);

REM "Let the list processing features of Notes turn that list of help lines into a list of JavaScript";
REM "array assignment statements.";

@Implode ("HelpLines[\"" + HelpKeysThisForm + "\"] =\"" + Lines + "\";"; @NewLine)

The Lines variable is loaded with a text list -- each item contains a help line. Since the values load from the same
view as the HelpKeysThisForm computed-for-display field (which was calculated to Email : SellName : Phone), they
correspond element by element. And the last line of this formula (beginning with @Implode) combines the help keys
with the help lines to produce the statements we've discussed.

Now, that's letting Domino do the work!! We didn't have to write a loop to go through each value -- the formula
language automatically creates a list of items from the list of keys and help lines we've concatenated. If you open the
Register form in a browser and then view the source, you'll see those lines of JavaScript.

It may seem strange to include a computed-for-display field right on a Notes form in the middle of a bunch of pass-
thru JavaScript code. It helps to think about the way Domino and the browser interact. Domino generates an HTML
page that it sends to the browser. Any area of a Notes form marked as pass-thru HTML is not formatted for the
browser by Domino. In other words, if you have bold text, Domino won't generate an HTML bold tag -- . This
way, you can code your own HTML tags. But Domino will still compute any field formulas, including computed-for-
display formulas. So, we use computed-for-display formulas to generate portions of HTML and/or JavaScript. That
HTML stream, which includes all the JavaScript code, is then sent to the browser for processing. So, the browser
acts as if we'd hard-coded every piece of HTML and JavaScript.

We load a second array, HelpPopups, using this same technique. It contains the text to be shown in the pop-up
window for each field. Here is the formula for the PopulateHelpPopupsJS computed-for-display field, which
generates the array assignment statements:

X := @DbLookup ("Notes": "Nocache"; @DbName; "HelpTopics"; Form; 4);
Popups := @If (@IsError(x); NULL; x);
@Implode ("HelpPopups[\"" + HelpKeysThisForm + "\"] =\"" + Popups + "\";"; @newline)

And here is the JavaScript it generates:

HelpPopups['Email"] = "We will not give this address out to anyone else, but will use it to contact you about
the status of your order.";

HelpPopups|['SellName"] = "This will allow us to release your name to other firms selling products we believe you
would be interested in hearing about.";

HelpPopups['Phone"] = "Please include country code (if outside the United States) and an extension
if applicable.";

Now we've seen how to generate the JavaScript to load the arrays, and how to pull data from those arrays
dynamically, at the browser, to display text in the help frame and in the pop-up window.

Now for the real world: The RegisterGold form

If you followed the instructions in the sidebar "Quick steps to adding field help to your applications," you used the
RegisterGold form rather than the Register form. The RegisterGold form references the "Field Help Gold" subform,
which has a modified version of the JavaScript functions that we've been looking at so far. We have two versions
because we discovered several interesting problems as we developed the techniques. Rather than complicate the
explanations of the basic techniques, we decided to cover them now in a separate section, and to put the more robust

solution in the Gold version of the form and subforms. (Note: We won't cover everything that's different on the
RegisterGold form, but it is all documented on the form.)

The following issues are addressed in the Gold version of the solution:

Making the no-hassle frames (described in the first article) work not just when a document is composed --
with an ?OpenForm -- but also when a document is re-opened in edit mode. Spawning a second frameset
using ?OpenForm&Frame=0 doesn't work in the second case.

The Netscape 4.x tabbing problem, as described earlier in the article. The Gold version determines the
user's browser type, and then uses the appropriate code for that browser type. This issue is what adds most
of the complexity to the Gold solution.

Making no-hassle frames work for documents opened in edit mode

First, we want to get our field help to display in the separate, "no-hassle" help frame when a document is opened in
edit mode. To do this, we can modify the $$HTMLHead formula to use the CGl variable Path_Info, which contains the
current URL. Here is the modified formula for the $$HTMLHead formula on the RegisterGold form, with the changes
in bold:

REM "compute the full path to this database (replacing backslashes with front slashes, and spaces with plus signs),
for use below in URLs";
db := @ReplaceSubstring(@Subset(@DbName;-1);"\" : " ";"/" 1 "+");
@If (
@Contains (Query_String; "Frame=0") | @Contains (Query_String; "OpenDocument");

@Return (NULL);
NULL
);
REM "If the a form name was used on the URL we will need to append ?OpenForm because we are also";
REM "appending other parameters using the & symbol";
PathToUse :=

@If (
@Contains (Path_Info; "?0pen”) | @Contains (Path_Info; "?Edit") ;
Path_Info;

Path_Info + "?0OpenForm"
);
"<html><head><TITLE>" + FormTitle + "</TITLE> </head> <frameset rows=\"90%,*\" frameborder=yes> <frame
name=MainFrame scrolling=vertical src=" + PathToUse + "&Frame=0> <frame scrolling=no name=HelpFrame
src=/"+db+"/FieldHelpGold?ReadForm&HelpFrameDefault=" + HelpFrameDefault + "> </frameset> <body> </body>
</html>"

This formula also accounts for one fairly common scenario. When a user is creating a document, the URL should
end in ?0penForm. If the user edits an existing document, the URL should end in ?EditDocument. Either way, we
want to append &Frame=0 to that URL to re-open the RegisterGold form in the top frame. But we cannot simply
append &Frame=0 to what's found in Path_Info, because your application might have URLs that have been coded
without the ?OpenForm on the end (this is a shortcut you may use yourself: if there is no other design element called
RegisterGold, Domino assumes a URL ending in RegisterGold includes an implicit ?0OpenForm). So, the following
URL is valid, because Domino assumes the ?OpenForm on the end:

http://hostname/dbname/RegisterGold

However, if you want to append parameters with an & symbol (such as, &Frame= to define frames), Domino requires
you to explicitly use the ?0penForm. So, the following URL is not valid:

http://hostname/dbname/RegisterGold&Frame=0

Instead, you must use a URL like this one:
http://hostname/dbname/RegisterGold?OpenForm&Frame=0
So, our revised $$HTMLHead formula takes care of appending the ?OpenForm if it is not already there.

Detecting the browser type and version

As discussed earlier in the article, certain types of JavaScript functions on a form cause Netscape 4.x browsers to
stop tabbing properly between fields. So, we want to detect the type of browser that the user is using, and then
display the appropriate help. Detecting the browser type is easy with JavaScript. A simple if (ver == "nn3" || ver ==
"nn4" || ver == "ie301" || ver == "ie302" || ... will tell you. (For more information on detecting browser types with
JavaScript, see the article Domino and JavaScript: Dynamic Partners (Part II) article.)

But, we can't rely on JavaScript to tell us the browser type for two reasons. First, we don't want any JavaScript
behind the field events for Netscape 4.x browsers, because the JavaScript is what causes the tabbing problem to
occur in the first place. Second, if the browser version is Netscape 4.x, we want to use an anchor tag (hot link) for a
field label with the HTML construct STYLE="text-decoration: none". This makes the field labels hot (able to have an
OnMouseover JavaScript event associated with them) without having them underlined like a traditional HTML link.
That way, we can instruct the user to point to a field label for help, but we don't have to wreck the look of our form
with underlined field labels. This HTML construct text-decoration: nonestyle is not supported in the older browsers.

Another solution is to use the CGl variable HTTP_USER_AGENT to tell us the browser type. Unfortunately, it returns
values like these:

Mozilla/2.0 (compatible; MSIE 3.02; Windows NT)
Mozilla/2.0 (compatible; MSIE 3.03; Windows 3.1)
Mozilla/3.01 Gold (Win95; 1)

Mozilla/3.0 (Win95; 1)

The first two are Internet Explorer 3.x browsers, while the second two are Netscape 3.x browsers. But it's certainly
not easy to tell which is which! And there are many possible values. For example, in a Web site we work with in
which 375 Lotus, Microsoft and Novell certified professionals registered, we detected 108 different values in this field!

So, our solution on the RegisterGold form is to first capture the CGI variable in the computed-for-display field,
HTTP_User_Agent. Then, we use a computed field called Browser immediately after the HTTP_User_Agent field to
tell us the browser type. The Browser field has this formula:

@If (

@Contains (RegistrationBrowser; "MSIE 4");
"IE4";

@Contains (RegistrationBrowser; "Mozilla/4");
"Netscaped™;

@Contains (RegistrationBrowser; "MSIE 3");
"IE3";

@Contains (RegistrationBrowser; "Mozilla/3");
"Netscape3";

"Unknown: " + RegistrationBrowser

)

This works for most browsers, telling us which browser is present.

The Label Hover solution versus the Field Focus solution
As we described in the first article, we tweaked the basic field help technique for Netscape 4.x browsers. We still
use the same JavaScript functions to display the text in the help frame (FrameHelpText and FrameHelpKey) and in

the pop-up window (showHelp). But we use them differently. Since having the onFocus=FrameHelpText... call in
each field's HTML attributes (what we call the "Field Focus" solution) causes a tabbing problem with Netscape 4.x,
we removed that call for Netscape 4.x browsers. Instead, we make the field label an anchor tag (we call this the
"Label Hover" solution) using the following type of call:

<A STYLE="text-decoration: none" onMouseOver="FrameHelpText('Please enter your full name.', ", 'LabelHover")"
onMouseOut="FrameHelpText(", ",")* HREF="JavaScript:FrameHelpText('Please enter your full name., ",
'LabelHover")">Name:

This is the native HTML that our technique generates for the Name field's label; it sends that tag to the browser
instead of a static text label Name, but only if the browser is Netscape 4.x. When the mouse moves over the anchor
tag, the help text displays. And, when the mouse moves away from the anchor tag, the help frame clears. Since there
is no pop-up help for this field, the HREF specified just re-displays the help text in case the user clicks on the label.

We don't hard-code this HTML, of course. What we do is have a computed-for-display field in place of the static text
label that tells Domino to generate the above HTML for Netscape 4.x browsers. Or better yet, we code it so that you
can decide to use the Label Hover help for both Internet Explorer 4.x and Netscape 4.x browsers, if you prefer (since
the hot-but-not-underlined links don't work in 3.x browsers, you wouldn't want to use this solution for all browsers).

What we've done, then, is add two indicator fields, defined as computed-for-display fields after the Browser field. One
is called LabelHoverHelp and the other is called FieldFocusHelp. Here is the formula for LabelHoverHelp:

@If (Browser = "Netscape4”; 1; 0)
You can easily change this to include Internet Explorer 4.x (IE4) as well.

Next, we have a computed-for-display field in place of each static text label. The formula generates the anchor tag
HTML shown above if LabelHoverHelp is true, or simply a static text label otherwise. Here is the formula for the
Name field label, which generates the HTML anchor tag we described above:

LabelText := "Name:";
msg := "Please enter your full name.";

popup := NULL;
type := "LabelHover";
href :=

@If (popup = NULL;
"JavaScript:FrameHelpText(\"' + msg + "\', \"" + popup + "\', \"' + type + "\')";

"JavaScript:showHelp(\" + popup + "\")"
);
@If (

@IsMember ("$$WebClient"; @UserRoles) & LabelHoverHelp;
onMouseOver=\"FrameHelpText(\" + msg + "\', \" + popup + "\', \" + type + "\')\" onMouseOut=\"FrameHelpText(\'\',
WA\ HREF=\"" + href + "\">" + LabelText

LabelText
)

If LabelHoverHelp evaluates to true, the anchor tag displays. Otherwise, the static label text displays. Notice that the
anchor tag also contains not only the onMouseOver and onMouseOut, but also the HREF to display the pop-up help.
So, when the mouse moves over the label, the help frame text appears. When the mouse moves away from the
label, the help text disappears. Clicking on the label causes the pop-up help to appear.

You'll notice that the FrameHelpText function has an extra parameter now, in addition to the help text and pop-up
text: a type parameter. In this case, we pass it the value LabelHover. The FrameHelpText function on the "Field
Help JavaScript Gold" subform looks like this:

function FrameHelpText(msg, popupText, HoverOrFocus) {
/I Write the help text to the help frame

window.parent.HelpFrame.document.write("<Center>" + msg);
if (popupText =="") {
window.parent.HelpFrame.document.write("</Center>");
/I Close out the formatting tags since there is no More Info link to be shown
}else {
if (HoverOrFocus == 'FieldFocus’) {
/I Show the More Info link
window.parent.HelpFrame.document.write (" -- ");
window.parent.HelpFrame.document.write("<A HREF='JavaScript:window.parent.MainFrame.showHelp(\"" +
popupText + "\")'>");
window.parent.HelpFrame.document.write("More Info</Center>");
}else{
/I Assume 'LabelHover" -- they can just click on the field label
window.parent.HelpFrame.document.write (" -- ");
window.parent.HelpFrame.document.write("Click on the label for more
information</center>");
window.parent.HelpFrame.document.close();

}
}

window.parent.HelpFrame.document.close(); // this closes out the document (allowing the text to display), not the
frame or window

}

The "FieldFocus" approach works the way we described earlier in the article: the text is written to the help frame
along with a hot link to display the pop-up text. It's the "LabelHover" approach that is new. We don't want the More
Info link to display when the Netscape 4.x user hovers over (points to) the field label, because when the user moves
the mouse away from the field label toward the link in the help frame, the onMouseOut event would make the help
frame text disappear (it disappears so that it's not left there confusing the user when the mouse is somewhere else on
the page, but it also makes the More Info link disappear when you try to click on it). So, instead of a More Info link,
we tell the user to "click on the label for more information.” And the HREF for the field label anchor tag contains the
call to the showHelp routine.

Conclusion

Now you know how to put readable, context-sensitive field help into your Domino applications, using techniques that
work together to handle all the major browsers in use today. Readable field help appears in a separate frame when
most users tab into a field, but appears instead for Netscape 4.x users when they point to a field label. Your users
will get help that's appropriate to the form they're filling out. And since you can let the non-technical owners of your
application maintain reusable help text via Notes or a browser, you should find your Domino Web applications are
truly easier to use!

ABOUT MICAH

Micah Blalock is an Internet consultant and instructor at WorkFlow Designs, Inc. in Dallas, Texas. Blalock has wide experience
developing solutions for the commercial database, medical and PC game industries. Currently, his focus is on development and
technical training with specialization in application development for Internet technologies such as Lotus Notes/Domino and
JavaScript. Blalock also lends his combination of technical and training expertise in developing the technique-oriented courseware
for Internet development offered through WorkFlow Designs TopGun Academy curriculum.

Copyright 1999 Iris Associates, Inc. all rights reserved.

