Simplifying your LotusScript with the Evaluate statement
by Mark Gordon

[Editor’s note: This article resides in “Iris Today”, the technical Webzine located on the http://www.notes.net
Web site produced by Iris Associates, the developers of Domino and Notes.]

Would you like to write fewer lines of code? Let Domino do some of your work for you? | doubt you
answered no, but if you have, what the heck -- read on to see what you'll be missing! We're going to show
you how to use the LotusScript Evaluate statement to easily include short and powerful formula language
constructs within your LotusScript code. You'll save a lot of headache, and as much as twenty lines of code
at atime! A single Evaluate statement can often replace many lines of complicated script, and in some
cases, can do what is nearly impossible in native LotusScript.

This article assumes you have some LotusScript experience, but does not assume you know a whole lot
about the formula language. In fact, many developers who bring Visual Basic experience with them into the
Notes world avoid the formula language. If you use LotusScript but know little about the formula language,
you'll learn some good tricks in this article. If you developed Notes applications prior to Notes Release 4,
when LotusScript was first introduced, you probably are already quite familiar with both the peculiarities and
the power of the Notes formula language. But, you may not realize that you can leverage your formula
language skills within LotusScript, building dynamic (yes, | said dynamic, even with Notes R4.5) formulas
within your LotusScript routines.

This article will show you how the Evaluate statement works, and, just as importantly, give you examples of
some of the more powerful formula language constructs you can exploit from your LotusScript routines. We
will start with a basic Evaluate statement, then move on to focus mostly on dynamic Evaluate statements,
which you may know were introduced officially in R4.6.1. However, we will also show you how to make
Evaluate statements dynamic in a R4.5x or R4.6 environment as well (and look at why the Evaluate
statement will not be necessary as often when using Notes R5). Finally, we will discuss several additional
examples of the Evaluate statement, including one construct that actually gives you a faster-performing
alternative to native LotusScript.

Downloading the sample database
You can try out the techniques described in this article by downloading the following self-extracting database
(56Kb).

3

Evaluate.exe

A simple Evaluate statement

Let's start with the simplest possible example for an Evaluate statement: calling an @function that requires
no variable or field arguments. The @Unique function, if used with no arguments, will return a unique
character string such as this one: MAGN-3WWMRX. You can use @Unique to assign each document in a
database an identifier that will always be unique, but which is much shorter, and thus, more manageable
than the universal document ID. Many Notes developers store an identifier generated with @Unique in each
Notes document. They're more manageable than the universal document ID, and they don't change when a
document is cut and re-pasted, or when a replication or save conflict is resolved.

Within your applications, you can include on each form a hidden, computed-when-composed field called 1D,
with the simple formula @Unique. Each document gets a unique key when it is composed. However, in
some cases, you may need to create a new document from an agent using a back-end LotusScript
document object rather than from a direct user action. Unfortunately, LotusScript has no equivalent to
@Unique. Here is an example of a script that creates a document and then uses an Evaluate statement to
invoke @Unique and assign the unique ID. (Note: The code that declares and creates the new document is

omitted here -- you can find the entire working agent in the New Partner Document Via Script agent in the
sample database):

' Use the Evaluate function to assign a unique ID using @Unique
doc.ID = Evaluate ("@Unique")

The above Evaluate statement simply invokes the @Unique function, which returns a unique identifier string.
The string is then assigned to the ID field in the Notes document doc.

The results of an Evaluate are returned in an array

In the Evaluate statement above, we stored the result of the @Unique function in an item on the document
simply by assigning the Evaluate statement to that item. If we were to instead assign the result to a variant
and then examine the result using the debugger, we would find that the Evaluate results are returned in an
array. Notice in the following screen that when we assign doc.ID to the variant VResult, the debugger
shows that the result is stored as a single-value array (which is exactly how Notes items store single-value
data in documents):

(I Be Edt Detwg wicow Heb I
O L tke e =k
Cortinus | Steplnin | StepOver | Steofst | 5o |
ﬂhi'bd-'li-n:li:ﬂc-cl:lbhcl ;ﬂ Eml:nﬂ-ﬂzt ;ﬂ
"I Wrms sy we ol Dmiecr ke i Bl rcnl o winael 1 ol bagey 18 deiplineind Lring thee diebugosrs =

vEesll = Evabishe [S vague’|

Calls: | Moin IMITIALIZE =1

Breakpoines | Vasisbles | Outges |

L 1] HNOTEFSESSION
kDOC MNOTESDOCUMENT
EETRING WARLAMT
] “MGOH-3U78 STRING
W NOTESUMNWTRESPECE
Glabals
e BB 2 2| G M e

If the result of an Evaluate statement returns multiple values -- such as when doing an @DbColumn or
@DbLookup (more on those later) -- the result is an array with the appropriate values.

String delimiters and dynamic formulas

The Evaluate statement executes everything within quotes as if it were a formula language formula. So, you
can have multiple lines of code -- just don't include the carriage returns. In the above example, we simply
put the formula in quotes. If you use formulas that have quotes within them, you can either use double
quotes to delimit the entire formula and single quotes within the formula, or use an alternative string delimiter
such as the {} brackets on either side of the formula and stick with normal double quotes within the formula.

Both of the following statements do the same thing -- they determine whether the string "Lotus" is a member
of the list "Lotus," "IBM," and "Microsoft":

VResult = Evaluate ("@IsMember (‘Lotus'; 'Lotus' : 'IBM" : 'Microsoft’)")
VResult = Evaluate ({@IsMember ("Lotus" ; "Lotus" : "IBM" : "Microsoft")})

Note: If you're one of those "avoid-@functions-like-the-plague” types, you may have forgotten that in
@functions, each argument is separated by a semicolon, while elements hard-coded in a list are separated
by colons. Of course, in practice, the list more often comes from a field or other variable than from a hard-
coded set of values.

Up until Notes R4.6.1, the formula used in an Evaluate statement had to be determined at compile time. In
other words, you couldn't use variable formulas. So, the following Evaluate statement (from the Static
versus dynamic formulas form in the sample database) is valid in R4.6.1 and later releases of Notes, but not
in a R4.5x client:

Dim strCompany As String

strCompany = "Lotus"

VResult = Evaluate ({@IsMember ("} & strCompany & {" ; "Lotus" : "IBM" : "Microsoft")})
Msgbox vResult(0)

You have to be careful with your quotes and brackets! Compare the first, static @IsMember formula with
this second, dynamic one. In the dynamic version, we are constructing a string that the formula language
interpreter sees as a static formula. The company names, as constants in that formula, have to be in
quotes, but we are building that static formula using LotusScript variables. We have to start and stop the
delimited formula with curly brackets to concatenate the variables into the right spots, but we still need to
use the double quotes that the formula language requires around our variables, which it sees as constants.
Whew! Kind of tricky to write and debug. Keep reading for a much easier approach!

The second approach to writing dynamic Evaluate statements works in most cases. You might find it less
confusing than trying to keep your brackets and quotes straight. Also, while the official "dynamic" Evaluate
statement does not work prior to R4.6.1, this approach does. This formula (also from the Static versus
dynamic formulas form in the sample database) does the same thing as the previous one:

Dim s As New NotesSession

Dim doc As NotesDocument

Set doc = s.CurrentDatabase.CreateDocument

doc.tempCompany = "Lotus”

VResult = Evaluate ({@IsMember (tempCompany ; "Lotus" : "IBM" : "Microsoft")}, doc)
Msgbox vResult(0)

The above formula is a lot easier to understand, because the formula looks like it would if you were writing it
directly into a field formula or formula agent. In this example, we are telling the Evaluate statement to
execute the formula we pass it in the context of a Notes document -- as if it were executing from a field
formula on the form. The formula is static at compile time, but the properties of the Notes document it acts
on are, of course, dynamic. That document can have items (fields) on it, and we can access those items
from the formula. In this example, we created a temporary document (it's temporary only because we never
saved it) just for the purpose of using variables in the @function.

In real examples, you can write values to the document object you are currently accessing in your script (you
can remove those items after you use them if you don't want them saved in your document), or you can
create a temporary document in your script just for this purpose. Most dynamic formulas will work using this
approach, because in most formulas, having the field values and the arguments to the @functions dynamic

is enough. However, if you want some other part of the formula to be dynamic -- if you wanted to
dynamically construct the entire formula, for example -- only a R4.6.1 dynamic formula can work.

Where formulas beat script -- some more examples
Now that you know how to use the Evaluate statement, you may still be wondering why you would bother.
Here are some more examples of things you can do with Evaluate statements.

Getting just the month or year from a date

When you convert a date to a string, the @Text function has a very powerful second argument that lets you
specify how you want a date or time formatted in a string. The following is an example that automatically
includes a year for a given date only if that date falls outside the current year. You'll find this example in the
Date Formatting With @Text form in the sample database. Try creating a document with that form, and
entering first tomorrow's date, and then your birth date. Tomorrow's date displays without the year, but your
birth date displays with the year -- unless you were born yesterday!

' Let's say you're already working with a document and you want to format the date...

Dim ws As New NotesUIWorkspace

Dim doc As NotesDocument

Set doc = ws.CurrentDocument.Document 'Shortcut alternative to explicitly creating a
NotesUIDocument

' A single Evaluate statement will format the date the way you like it

' @Text with a "D1" argument displays the year only if the date is a prior year
vTheDate = Evaluate ({@Text (TheDate; "D1")}, doc)

Msgbox vTheDate(0)

You can use the following codes for the @Text function's second argument (from the Notes Help topic on
@Text):

DO -- Year, month, and day

D1 -- Month and day, year if it is not the current year
D2 -- Month and day

D3 -- Year and month

TO -- Hour, minute, and second

T1 -- Hour and minute

Z0 -- Always convert time to this zone

Z1 -- Display zone only when it is not this zone

Z2 -- Display zone always

SO -- Date only

S1 -- Time only

S2 -- Date and time

S3 -- Date, time, Today, or Yesterday

Sx -- Use when you cannot predict the exact format of the value being passed, but you know that it
will be either a time, date, or both.

Appending items to a list

One of the big differences between LotusScript and the formula language is the representation of multi-value
fields and variables. In LotusScript, a multi-value field is an array -- in fact, every field is treated as an array,
even if it has only one value. In the formula language there are no arrays, only lists. The difference is that
lists don't have to be declared or pre-sized, so they are much easier to work with.

To append a new value to a list of existing values, you can use a single line of LotusScript code -- an
Evaluate statement -- which invokes the list processing features of the formula language and adds whatever
appears in the Newltem field to the List field:

doc.List = Evaluate ({List : Newltem}, doc)

Without an Evaluate statement, you would probably scratch your head for a few minutes and the come up
with a block of code that looks something like this (see the form Appending ltems to a List in the sample
database):

Dim aList As Variant, intBound As Integer

' Set the current list into an array variable

aList = doc.List

' Redeclare the array to allow one more element
intBound = Ubound (aList)

Redim Preserve alList (intBound + 1)

' Set the new value into the new last element in the array
aList (intBound + 1) = doc.Newltem(0)

' Replace the document item with the new array

doc.List = aList

Another advantage of treating the fields as lists with the Evaluate statement is that you can do other
"cleanup” work on the lists at the same time. This second Evaluate example uses @Unique to make sure
that the new item it adds is not already in the list. It still uses a single line of code!

doc.List = Evaluate ({@Unique(List : Newltem)}, doc)
Now try doing that without the Evaluate statement!

Other uses for Evaluate
Here are some other examples of powerful @functions you can exploit in Evaluate statements:

@UserRoles -- Tells you what roles the user is a part of. This is useful for directing the processing
based on a user's security level. The LotusScript equivalent is much more complicated, requiring you to
use the NotesACL and NotesACLEntry classes -- and half a page of code -- to do what a single
@IsMember ("[RoleName]"; @UserRoles) does.

@Replace -- Lets you write a single line of code to look through a list for one or more values you
specify, and either removes them or replaces them with other values. Tricky syntax, but very powerful
once you figure it out! There is no LotusScript equivalent in Notes R4.x.

@ReplaceSubstring -- Replaces portions of text from a string or list of strings -- again, this works with
a single line of code, so there is no need to write a loop. There is no LotusScript equivalent in Notes
R4.x.

@Left, @Right, @Middle -- Allow you to easily extract data to the left, to the right of, or between
specified characters. LotusScript has a Left and a Right function, but they are not as flexible as @Left
and @Right.

You'll evaluate less in Notes R5

Notes R5 contains enhancements to LotusScript that let you do several of the things we've discussed above
without using Evaluate. Here are some of the new LotusScript functions mentioned in the Notes R5 Beta 1
Release Notes:

StrLeft, StrRight, StrLeftBack, and StrRightBack do the equivalent of @Left, @Right, @LeftBack, and
@RightBack.

FullTrim is like @Trim

Replace (a temporary name of the function) acts like @Replace

ArrayGetindex is like @Member

ArrayAppend lets you append an item to a text list

According to the Release Notes, these are "LotusScript functions that correspond to some of the
@functions. They are implemented to allow the script writer to manipulate Notes data more easily instead of
achieving the same effect by calling Evaluate.”

Sometimes the advantage is performance

Normally you wouldn't use an Evaluate statement to improve the performance of your application. A call to
an Evaluate uses extra overhead to invoke the formula language compute engine in addition to the
LotusScript interpreter. The performance degradation wouldn't normally be noticeable, but if an Evaluate
call was executed while looping through thousands of documents, you might be able to measure a
difference. However, there is one example of where using an Evaluate statement can actually make your
code run faster -- a lot faster: using an Evaluate ({@Dblookup...}) in place of the NotesDatabase method
GetAlIDocumentsByKey.

Let's say a script in a help desk application you're developing needs to access and store or display the name
of each trouble ticket processed for a particular region. A common script developer's approach to accessing
data such as this is to use the LotusScript method NotesDatabase.GetAllDocumentsByKey. This method
would let you get all the trouble tickets from a view and then categorize them by region.

The reason the Evaluate is faster is because the @DbLookup gets values from a view index, without having
to loop through and access each document. In contrast, pulling values using GetAllDocumentsByKey
requires you to loop through and access each document.

In the sample database, you will find a form that illustrates how much faster using @DbLookup can be. The
form is called @DbColumns and @DbLookups Vs. Script Alternatives. Here is what you will see if you
create a document with that form:

| @hbColumne snd @OELockups Ve, Sopt Almnatioes - Loluz Noles

[T e Edt Vew Lwaie pctions Tedt Wiedow Help

@ hColumns and @DbLookups vs. Scnpt Alternatives =

Fill put the fiedds balow and prass ces ang moea al the foae bubians 1o compans peocessing ime

W AN Spachy amy dalsbnse on amy senar, Vou'll naed 10 know Ta detsbase path, Wew name, and the
structur of i you want i we

The defeul walues ana for the lng e onyour home serdes IDoking up entnes ior hal sansr Hyou ara
discanneciad irom & senver e celaul walkes won'l work, thary dalaukta look up the antias for your homa
sersewithin it's own log fle.

Senenr bphaatinoatadgeis
i bes blank I yons vk B0 SO0 & Sl abate o o eodl rokiishon
Datahasa: liog st
T ot s i e v o Hhes ot PO eard 10 B0 S)
Wi ‘Dmtmbpse\Siras
A abeyaiizd it wither hat dstsbaa pou st 1o ook 1o
Ky "Alphafeknoatedgells

e vk st e B Aound i e Fest cobumn of th categorniaed visw pou noecifisd

Dikplay Colump & 77
Then cshar oo o B cobarn i ik~ o vk 5 il [resedad for Butorn T ard 3 belerd]

Fiald 10 Disploy, " Titls
Thea nasw of the e whass ket pou sl 1o diple freded i baton | bekea)

=

% ST q T Mk =

Once you fill in the information about the view you want to access, you can click one of three buttons:
Traditional Script -- GetAllDocumentsByKey and Loop Through; Store @DbLookup in a Collection and Loop
Through it; or Do an @DbLookup and then simply store the results in a field.

= EObhCplumns and SFILookups Wi Soepd Albemabres - Lobus Nobes

o bopge washym Brast o b Dpamad i thes Fest ooduren of thes st gnoresd v ol spesciled =~
Display Columnd- “2

T cosh e rasideed of D cobuiion i Hhat vaee i vieird 1o ey (reded [or butons 7 ared 3 bebim]

Fiald io Digplay: * Tile
Thes ramen i s Finked whiose vk you weank 1 dinplay needed for button 1 bekow

1. Trationed Sciipt = GetIDocumenisBykey and Loop Through |

et

Erud
Elsprd Tewy: () 3mconcs

|72 Stoen EDBLoakup in & Colincian and Loop Theough it |

Srat:

Erat
Elagried Turet

| 3. Do & BObleokup and Sen simph sties e rests in o Gl |

Syt
B v -
= T 5 T e

The first button (Traditional Script -- GetAllDocumentsByKey and Loop Through) uses the
GetAlIDocumentsByKey method to access the documents matching the key you specify. Here is an excerpt
from the button script:

Set view = db.GetView (thisdoc.TestView(0))

' Get a collection of documents in that view which match the specified key
Set dc = view.GetAlIDocumentsByKey(thisDoc.Testkey(0), True)

The above script creates a collection of documents which match the key, and the following script loops
through those documents one at a time:

' Loop through the collection, recording each returned value in the collection
Set doc = dc.GetFirstDbocument
For x = 1 To dc.count
' Store the value of the field to be retrieved in the array
vitemValue = doc.GetltemValue (thisDoc.TestSubjectField(0))
aValues (x) = vitemValue(0)
Set doc = dc.GetNextDocument (doc)
Next x

When you create a document such as the one above and access a database on your network that has more
than a few matches to the key you specify, you will see a significantly faster result with buttons #2 and #3,
which use @DbLookup to retrieve the values. Here is an excerpt from button #2 (Store @DbLookup in a
Collection and Loop Through it):

' Use a @DbLookup to get the results and store them in a variable
vList = Evaluate ({@dblookup ("Notes" : "NoCache"; TestServer : TestDB; TestView; TestKey; TestDC)},
thisdoc)

' There is no need to loop through the results at all if we're just going to display them in a single field
' However, sometimes in real applications each return value needs to be processed.
' This loop will simulate that processing
Forall strName In vList
X = strName
End Forall

When tested, button #2 ran in about one second, versus six seconds for button #1. That's quite a difference!

Of course, an @DbLookup has a 64K limit on the amount of data it can return. But in many cases, this
approach is preferable because each lookup is relatively small. If you were writing a nested loop agent, for
example, looping through hundreds or thousands of documents and executing a second nested loop to look
for keyed matches for each document in the outer loop, it would really make a difference if each lookup ran
six times faster! You could include an error handler to test for a given lookup failing due to the 64K limit, and
branch to alternate GetAllIDocumentsByKey code for the lookups that failed.

One more thing -- formulas "write" many of your loops for you!

Like the second button, the third button in the above example also uses an @DbLookup, but it adds some
code to "clean up" the data. Instead of looping through the results in LotusScript, it uses a single Evaluate
statement to implicitly "loop" through the data, removing any extra spaces from each item, and also
removing the duplicates from the list. Here is an excerpt from the button script:

' Use an @DbLookup to get the results and store them in a temporary field
thisdoc.tempList = Evaluate ({@dblookup ("Notes" : "NoCache"; TestServer : TestDB; TestView; TestKey;
TestDC)}, thisdoc)

' Clean up the results (removing spaces and duplicate entries) and store the results
thisDoc.Results3 = Evaluate ({@Trim (@Unique (tempList))}, thisdoc)
Call thisdoc.Removeltem (“tempList”) ' no need to keep the temporary field

The @functions @Trim and @Unique, along with many other @functions, will implicitly loop through a list of
items and operate on each element in that list. You may have written code to remove extra spaces from
strings. @Trim does it just like that, and if you pass it a list, it does it on each item in the list. Likewise,

many programmers have written code to extract unique items from a list. It's built-in with the formula
language. By the way, in our benchmarks, button #3 ran twice as fast as button #2!

Notes R5 will help in this situation as well

The @DbLookup in an Evaluate statement runs faster, as discussed, because it lets you retrieve values
from a view without accessing each document. There are enhancements to Notes R5 that will let you do the
same thing without an Evaluate statement. The NotesView class has a new method, GetAllEntriesByKey,
which has the following syntax:

GetAllEntriesByKey
notesViewEntryCollection = notesView.GetAllEntriesbyKey(keyArrayVariant [, exactMatchinteger])

NotesViewEntryCollection is a new class. You can navigate through a NotesViewEntryCollection much like
you would a NotesDocumentCollection, except that you can avoid accessing each document and thus,
improve performance. The advantage of the GetAll[EntriesByKey method is that the resulting collection will
return documents in the exact order that they appear in the view. Also, when accessing documents from a
NotesViewEntryCollection, the ColumnValues property is available.

Conclusion

When Lotus included LotusScript in Notes R4, an object-based structured programming language became
part of the Notes development environment for the first time. Many people thought LotusScript spelled the
end of the formula language and its unusual @functions, but as most seasoned Notes developers know,
the formula language complements LotusScript in many powerful ways.

Now you know how to get the best of both worlds, including powerful constructs from the formula language
within the more structured environment of a LotusScript routine. We hope that these techniques will save
you time and help you produce applications that are easier to maintain.

Copyright 1998 Iris Associates, Inc. all rights reserved.

