

by
Michael
Patrick

Level: Advanced
Works with: Designer 5.0
Updated: 08/01/2000

Imagine that your customer has asked you to design a Web page in which
certain elements must be selectively hidden or revealed based on actions
taken by the user. "No problem," you say. Then the customer pulls out a stick
and shoves it between the spokes of your bike: "Do it without page refreshes.
I find them annoying." You have two options: You can don your most
authoritative voice and announce "You obviously have no idea what you're
talking about!" (not recommended, by the way) or you can brandish your
Dynamic HTML (DHTML) sword and slay that dragon (the page, not your
customer).

Chances are, if you've done some Web development, you already know a
little DHTML. That's because DHTML isn't new at all; it's really HTML,
JavaScript, Cascading Style Sheets, and the browser's Document Object
Model (DOM) working in conjunction with one another to achieve dynamic
presentation of content.

As you can imagine, DHTML is a huge topic that can't be covered in one
article. To introduce you to DHTML's possibilities, this article examines some
Domino limitations and how you can use DHTML to work around them. The
first is a technique for simulating a tabbed table on a form so that users can
switch between the tabs without hitting the server (which also demonstrates
one way to tackle the hide-when problem introduced in the first paragraph).
The second is a way around the Domino restriction that allows only a single
embedded view to exist on any given form.

A word of caution: DHTML is not applicable in all situations, particularly
where the target browser base cannot be identified. Because DHTML is
based on a number of independent specifications, it is very much at the
mercy of the browser manufacturers and how they choose to implement
those specifications. As a general statement, the 4.x releases of both
Netscape's Navigator and Microsoft's Internet Explorer (IE) support these
specifications at a basic level. Internet Explorer 5 is better still, and the
soon-to-be-released Navigator 6 promises the tightest adherence to
standards yet.

The examples in this article work with Microsoft Internet Explorer 4.x and
Netscape Navigator 4.x. A sample database containing these examples,
DHTML.nsf, is posted in the Iris Sandbox so that you can download and
examine it. This article assumes basic familiarity with HTML, JavaScript, and
Cascading Style Sheets.

Simulating tabbed tables
One of the great features of the R5 Notes client is its support for
nice-looking, flexible tabbed tables. They can even be effortlessly nested
within one another.

While Domino will serve up tabbed tables to a Web browser, there's a
problem: the clicking of any given tab results in a page refresh, which means
a server hit. Unfortunately, that can add up to a lot of clicking and waiting,
not to mention the potential for losing data between the refreshed pages and

© Copyright 2000 Iris Associates, Inc. 1

Teach Domino new Web tricks with DHTML "Iris Today" webzine at http://www.notes.net

the impact on server performance.

DHTML provides a way around this problem. There's quite a bit of
coordination among various form elements involved, but once the basic
technique is understood, it's a snap.

Note: While the following example shows the editing of a document, tabbed
tables are just as applicable in situations where you are simply displaying
read-only data to users. This is important to note, because while Netscape
Navigator 4.x recognizes FORM tags that span DIV tags under basic
conditions, the following example makes use of some advanced techniques
that Navigator 4.x does not fully render. As a result, this tabbed table
example works perfectly well in Navigator 4.x when reading a document, but
not when editing its content.

First, let's take a look at what we're ultimately striving toward. When the
Tabbed Table form is previewed in IE, it looks like this:

Guitars, Basses, and Drums are links that represent the three tabs, and the
current tab (Guitars, in this case) is denoted by the color of the line running
underneath the tabs. Each tab contains its own fields, all of which are part of
the document and are "saved" when the document is submitted. When you
click on another tab, for example, the Drums tab, the Guitars fields are
hidden and the Drums fields are revealed:

The Tabbed Table form's Cascading Style Sheet and JavaScript
Before examining how the tabs are physically constructed, let's take a look
behind the scenes at the various pieces that make the tabs actually work.

© Copyright 2000 Iris Associates, Inc. 2

Teach Domino new Web tricks with DHTML "Iris Today" webzine at http://www.notes.net

The first item of interest is the form's Cascading Style Sheet.

You can think of Cascading Style Sheets (CSS) as allowing the separation of
content from the presentation of that content. Style sheets provide a single
place that lets you define how content should look and behave as opposed to
interspersing that information throughout the content as you used to do
before CSS came along.

For the sake of simplicity for this article, I've embedded the style sheets in
the examples and the sample database directly into the forms. This is fine
when a given style sheet only needs to modify a single form/document, but
what about instances where a single style sheet would be applicable for
multiple forms/pages? For greater flexibility, style sheets can also be linked.
This means you place a reference to the style sheet on each form it needs to
modify, and the style sheet itself is maintained in a separate file. For more
information, see the Linking style sheets sidebar.

The following code represents the style sheet embedded in the HTML Head
Content object of the Tabbed Table form:

"<STYLE type=\"text/css\">" +
"A.tabs { text-decoration: none};" +
"#tab1{position:absolute;top:40;left:10};" +
"#tab2{position:absolute;top:40;left:10; visibility:hidden};" +
"#tab3{position:absolute;top:40;left:10; visibility:hidden};" +
"</STYLE>"

First, the style sheet's content is surrounded by STYLE tags. Each line within
the tags represents a "style rule" intended to modify some element of the
resulting HTML document. The first style rule specifies that the links on each
of the tabs are not to be underlined. This is by no means required, but it's
instructive to include here. What the line says is that some links (hence the
"A" reference relating to <A> link tags) will be specifically labeled as
belonging to the class "tabs" and we'll set the text-decoration attribute of this
class equal to "none." You'll see this in use a little later.

The three rules starting with "#tab" control the positioning and visibility of the
tabs themselves. There's one for each tab, and if we added or took away
tabs, these lines would have to change accordingly. The first attribute is
"position," which for this example is set to "absolute" so that we can control
exactly where each of the tabs will be placed on the screen. You'll notice that
each rule contains the same values: 40 pixels from the top of the browser
window and 10 pixels from the left margin. This causes the tables containing
the tabs to overlap, which is exactly what we want. If these had different
values, the tabbed table would appear to jump all over the screen -- which
you might think is cool, but your customers probably will not!

The only other attribute to discuss is "visibility," and since elements on a
form/page are visible by default, we've left it off the first rule, which relates to
the first tab. The second and third tabs, however, are both marked as initially
hidden.

The actual code that makes the tabbed table work is contained in the form's
JS Header:

var currtab = "tab1";

function showtab(tabnum) {
tabname = "tab" + tabnum
if (tabname != currtab) {

if (window.document.layers) {

© Copyright 2000 Iris Associates, Inc. 3

Teach Domino new Web tricks with DHTML "Iris Today" webzine at http://www.notes.net

handle="window.document.layers";
stylevar="";

}else{
handle="document.all";
stylevar=".style";

}
eval(handle+'["'+currtab+'"]'+stylevar+'.visibility = "hidden"');
eval(handle+'["'+tabname+'"]'+stylevar+'.visibility = "visible"');
currtab = tabname;
}

}

First, the variable "currtab" is set to "tab1" by default. This will keep track of
which tab is currently visible. Next is the "showtab" function, which will be
called every time you click on one of the tabs. It accepts one argument, the
number of the tab that was clicked. If any tab other than the one currently
visible has been clicked, the next thing we must do is determine which
browser is being used.

Since Netscape Navigator includes a layers object type in its Document
Object Model (DOM) and since IE does not, we use the line:

if (window.document.layers)

It performs a very simple test to determine whether or not the layers object is
supported in the current browser. If it is, you're using Netscape, so we'll set
the variable called "handle" equal to "window.document.layers." If you're
using IE, we need to set two variables, "handle" and "stylevar," to
"document.all" and ".style," respectively.

Why the difference between browsers? Essentially, the Netscape and
Microsoft DOMs are fairly divergent, and when it comes to addressing
elements on a page, this is especially true. Regardless of the browser in use,
we're setting the visibility property of the old tab to "hidden" and the newly
selected tab to "visible," and the same code is used to achieve that in both
browsers. Finally, we reassign "currtab" to the newly selected tab.

The Tabbed Table form
To see how the tabs are created, you can look at the form in Designer:

The first thing to notice is that the tabs are really just a succession of tables,

© Copyright 2000 Iris Associates, Inc. 4

Teach Domino new Web tricks with DHTML "Iris Today" webzine at http://www.notes.net

with a separate table for each tab. While only two are shown in the graphic
above, there is a third table under the second. The fields belonging to each
tab are placed in a table as well. In the example above, there are Make and
Strings fields for both the Guitars and Basses tabs, each containing values
unique to its corresponding tab.

Let's look at everything that constitutes a single tab. First, there are two
tables (for the tabs and the fields) surrounded by a Division -- for example,
"<DIV ID=tab1></DIV>" -- that is marked as passthru HTML. The DIV
element is simply a way to group multiple elements together logically,
allowing us to refer to them collectively. Before we can do that, however, we
need to name the DIV. In the case of the first table shown, the Guitars tab,
"<DIV>" has an additional attribute, ID, which identifies this Division by the
name "tab1." If you refer back to this form's style sheet (remember, it's
located in the form's HTML Head Content object), you'll notice that we've got
a rule for "tab1." As a result, that rule is applied to the "tab1" Division, and so
everything contained by the Division is positioned absolutely.

Each tab is a cell in the table. The content of these cells looks like this:

<DIV ALIGN=center><A CLASS="tabs" HREF="#"
onClick="javascript:showtab(1)">Guitars</DIV>

This is marked as passthru HTML. Breaking it down, the cell content is also
wrapped in a DIV tag, mainly for the purpose of centering the tab content via
the ALIGN attribute of the DIV element, which is set to "center." The links
within each cell/tab are of particular interest. Notice that link tags -- "<A>" --
contain the attribute "CLASS="tabs"." If you refer once again back to the
form's style sheet, you'll see that this matches the rule that specified that
links of this class not be underlined. Not surprisingly, the links on this form
not belonging to the "tabs" class (provided there are any) will be unaffected.

Also, we're calling a JavaScript function as part of the link, although it's a
good practice to avoid such calls directly in an HREF. Links, however,
require an HREF; since in this case, HREF shouldn't be doing anything, it's
being terminated by the "#." Instead, the form's "showtab" JavaScript
function is called by the link's onClick event, passing the numerical value of
its tab.

There remains one last detail worth pointing out with regard to this example.
If you compare the screen of the Tabbed Table form in the browser with the
screen of it in Designer, you'll see that the first cell/tab and the merged cell
running underneath the tabs is a dark yellow. And how were the cell heights
specified? The answer is that the R5 Designer gives you many more options
for taking control of tables created in the IDE than were previously available.
Look at the last tab of the Table Properties dialog box:

© Copyright 2000 Iris Associates, Inc. 5

Teach Domino new Web tricks with DHTML "Iris Today" webzine at http://www.notes.net

This shows the code controlling the first tab, Guitars. In the Other field under
the Cell HTML Tags section, we've provided a specific hex value for the cell's
background color. (In this case, it's the hex value for a deep yellow.) This is
handy for supplying predefined color values. We've also set the cell height to
25. The merged cell underneath the tabs also has the same color value
defined and it's height is set to 5. The short of it is, in R5, tables can take on
whatever look you choose.

That's it! Visually, the Tabbed Table form is quite busy, but it's also fairly
simple once you realize that much of it is redundant. (You can use the code
in the sample database, DHTML.nsf, to see how this works in your browser.)

There are two more points to make before leaving this example:
The tabbed tables didn't have to be constructed from HTML tables; we l

could have created multiple graphics to represent the tabs and switched
between them. This example opted for HTML tables because they are
simple to create and they load much more quickly than multiple
graphics would.
What about nested tabbed tables? For those interested in extending this l

tabbed table example, the sample database includes the Nested Tabbed
Tables form, whose modifications are fairly obvious once you
understand the basic technique. The Nested Tabbed Tables form only
works in IE.

Multiple embedded views on a page
Contrary to what Notes/Domino professionals have come to expect, there are
instances where the Web browser has an advantage over the Notes client.
One of these is the ability to present multiple views on a page without
resorting to multiple view applets. Try that in the Notes client! The following
screen illustrates this in action:

© Copyright 2000 Iris Associates, Inc. 6

Teach Domino new Web tricks with DHTML "Iris Today" webzine at http://www.notes.net

In this example, everything above the horizontal rule represents the Basses
view, and everything below it is supplied by the Guitars2 view. Two views are
not necessarily the limit; you could include more if you wanted. Also, notice
the Basses and Drums links above the upper view. In IE, these links actually
switch the upper view without reloading the page. For instance, if the Basses
view is visible, clicking on the Drums link will switch the upper view to the
Drums view. To view the Basses view again, you'd simply click on the
Basses link. (Because the switchable links don't work in Netscape Navigator,
they are hidden when viewed through that browser. We'll see how they are
hidden a little later.)

How was all this accomplished? Let's look at the Multiple Embedded Views
form in Designer:

At the top of the form, we've included the field "ThisDb," which is editable but
hidden via its HTML Attributes, which are set to "Type=\"Hidden\"." This
allows the field to be hidden in the browser but still available for referencing
by the page's code, which will be important for the JS Header of the form.
"ThisDb" has the standard formula used to calculate the database path:

@ReplaceSubstring (@Subset (@DbName; -1); "\\" : " "; "/" : "+")

Skipping over the Drums and Basses links for a moment, the following block,

© Copyright 2000 Iris Associates, Inc. 7

Teach Domino new Web tricks with DHTML "Iris Today" webzine at http://www.notes.net

which is marked as passthru HTML, is responsible for the inclusion of the
form's upper view:

<<Computed Value> ID=switchview height=200 width=750 scrolling="yes"
src="/<Computed Value>/basses?openview">
</<Computed Value>>

Similarly, the same code is repeated below the horizontal rule (<hr>) for the
Guitars2 view.

The real work is being done by the first and last lines of computed text,
which, with one exception, look like this for both lines:

@If(@BrowserInfo("BrowserType") ="Notes"; "IFRAME";
@BrowserInfo("BrowserType") = "Microsoft"; "IFRAME frameborder=0";
@BrowserInfo("BrowserType") = "Netscape"; "ILAYER";
"")

The only difference between the first and last lines of computed text is that
the last line omits the frameborder=0 parameter because it is generating a
closing tag and attributes aren't associated with closing tags.

What's really going on here? This code introduces the IFRAME and the
ILAYER. It creates a "window" or "frame" within a page depending on the
browser type. The window or frame can be loaded with content independent
of the page on which it resides. As I mentioned earlier, there can be more
than one per page, which makes for some interesting possibilities.

IFRAME is part of the HTML 4 specification and is supported by IE, hence its
use when @BrowserInfo("BrowserType") determines that Notes or IE is the
browser. ILAYER is a Netscape-only tag that works much like IFRAME,
except scrolling is not supported as it is with IFRAME. Scrolling allows the
IFRAME to be sized to whatever best fits the overall page design. A scroll bar
independent of the browser window allows for scrolling within that IFRAME.
Since ILAYER does not support this scrolling, make sure that ILAYER is
sized big enough to accommodate all the content you wish to display.

We've also given IFRAME or ILAYER a name with ID=switchview, although
it's really only relevant to IE, as you'll see in a moment. Lastly, we've
provided additional attributes to the opening tag -- height, width, scrolling,
and SRC. SRC controls where our content is coming from. In the code
above, the SRC attribute's computed text equates to the form's ThisDb field,
which helps us build a relative URL to our Basses view since that view was
chosen as the default upper view when the form is first opened. (Although
the example uses the generic Domino-generated view format, all the views
could have been presented via a $$ViewTemplate form.)

So, without any other code, we've now placed two views on a single
form/page. As if that weren't enough, let's conclude by discussing how to
switch the IFRAME content on the fly. (Remember, this only works reliably in
IE and so these controls are hidden in Netscape Navigator, but everything up
to this point works in Netscape Navigator.)

Back to the passthru HTML Drums and Basses links near the top of the form.
First, remember that these links don't work in Netscape Navigator, so this
entire piece of passthru HTML has been given a Hide-When formula, which
uses the @BrowserInfo function that we've already seen in action:

@BrowserInfo("BrowserType") = "Netscape"

So, when true, the passthru HTML Drums and Basses links do not appear in

© Copyright 2000 Iris Associates, Inc. 8

Teach Domino new Web tricks with DHTML "Iris Today" webzine at http://www.notes.net

Netscape Navigator. Here is the passthru HTML for the links:

Basses

Drums

The onClick event of both links calls the JavaScript function "showview" with
the name of the view to switch to. Here is the form's JS Header:

function showview(view) {
target = "/" + document.forms[0].ThisDb.value + "/" + view +
"?openview";
document.all.switchview.src = target;

}

The first line of this function makes use once again of the ThisDb form field
to build a relative URL to the view we ultimately want to display. The actual
opening of the view is accomplished by the function's last line, which sets the
SRC attribute of our IFRAME (remember, we called that IFRAME
"switchview") to the relative URL we just constructed on the line above. Viola!
Switchable views!

The ability to include multiple views on a given page is a powerful option for
Domino developers and can lead to some creative solutions. As was alluded
to above, you're not limited to Domino's default view presentation. In fact,
views can be displayed through any of the means by which they normally
would. The sample database includes a Multiple Embedded Views 2 form in
which the bottom view is set to "Treat view contents as HTML," thus
demonstrating the flexibility of this technique.

Just the beginning
Hopefully, these examples have demonstrated some of the flexibility that you
can incorporate into Domino-based Web solutions, and that what you've
seen here will serve as a foundation from which you can launch your own
explorations of DHTML's potential.

You've seen that the DHTML path has a few challenges, mainly due to the
varying levels of support across different browsers; so don't expect
cross-browser DHTML development to be frustration-free. But Web browsers
will continue to evolve, as will the specifications that comprise DHTML. The
best way to thwart many of the potential roadblocks is to educate yourself
while diving in.

One of the best references available is Danny Goodman's Dynamic HTML:
The Definitive Reference (ISBN 1-56592-494-0) from O'Reilly & Associates,
Inc. Additionally, most HTML 4 references also cover DHTML to a certain
extent. WebMonkey and CNET's Builder.com are both excellent online
sources for tutorials and examples. The HTML and CSS specifications are
maintained by the World Wide Web Consortium (W3C), while information
on the competing DOMs and implementation of ECMAScript (from which
JavaScript and JScript are derived) can be found from Netscape and
Microsoft.

Although you need to continue educating yourself about DHTML, there's no
question that it is a powerful tool (or set of tools, actually) to have at your
disposal when developing applications. Using DHTML, you can deliver
solutions that both perform faster and are more intuitive to users. After all,
the Notes client delivered on these promises long ago; with DHTML, the Web
can now deliver on them as well.

© Copyright 2000 Iris Associates, Inc. 9

Teach Domino new Web tricks with DHTML "Iris Today" webzine at http://www.notes.net

ABOUT THE AUTHOR
Michael Patrick is a Senior Consultant with Knowledge Resource Group in Indianapolis,
Indiana. He would like credit Henry Newberry of Synergistics for planting the seeds from
which this article sprouted.

© Copyright 2000 Iris Associates, Inc. 10

 Today" webzine at http://www.notes.net

Linking style sheets sidebar
Embedding a style sheet directly into a form is fine when the style sheet needs to modify only the form in
question, but what about instances where a single style sheet is applicable to multiple forms? In such cases, it
would be handy to maintain the style sheet separately and have each form that must apply its rules simply
reference it. Linking to the rescue!

The Linked CSS Tabbed Table form in the sample database in the Iris Sandbox (DHTML.nsf) is exactly the same
as the Tabbed Table form detailed in the article with one important exception: instead of containing the style
rules, the form's HTML Head Content object contains the following code:

db := @ReplaceSubstring (@Subset (@DbName; -1); "\\" : " "; "/" : "+");
"<LINK REL=stylesheet TYPE=\"text/css\" HREF=\"/" + db +
"/tabbed+table+style+sheet/$FILE/tabbedtable.css\">"

The first line is the standard method for deriving the path of the current database; it's the remaining code doing
the real work. The LINK tag specifies that a style sheet can be found at the URL provided in the tag's HREF. In
this case, it's pointing to a page element in the database called "Tabbed Table Style Sheet." If you examine the
page in Designer, you'll notice that all it contains is an attached text file, "tabbedtable.css," which is where the
style rules for this example are stored. The page itself is never actually displayed; it exists as a repository for the
attachment. To access "tabbedtable.css," we simply use Domino's $FILE convention, which gives us access to a
document or page's attachments, and we also provide the name of the attachment we want to access.

Finally, what does the "tabbedtable.css" file actually look like? It's identical to the embedded style sheet except for
the absence of the STYLE tag, which is not needed because it is effectively being provided by the LINK tag in the
form's HTML Head Content. So, using any standard text editor, the following lines need to be saved with the
name "tabbedtable.css" and then attached to a page or document in the database:

A.tabs { text-decoration: none}
#tab1{position:absolute;top:40;left:10}
#tab2{position:absolute;top:40;left:10; visibility:hidden}
#tab3{position:absolute;top:40;left:10; visibility:hidden}

That's it! The file is now stored in the database and is now available to be referenced from multiple forms. From
the standpoint of reuse and maintainability, linking style sheets makes perfect sense and is simple to implement.

© Copyright 2000 Iris Associates, Inc. 1

