
© Copyright IBM 1

by Sally Blanning DeJean
and David DeJean

Level: Advanced
Works with: Notes/Domino
Updated: 01-Aug-2003

This article is the fifth in a series that takes a close look at the new classes and enhancements to the
LotusScript programming language in Notes/Domino 6. Previous articles dealt with the new LotusScript classes
for manipulating rich text elements ("LotusScript: Rich text objects in Notes/Domino 6"), LotusScript support for
XML ("LotusScript: XML classes in Notes/Domino 6" and "LotusScript: More XML classes in Notes/Domino 6"),
and enhancements for programming administration functions ("LotusScript: The NotesAdministrationProcess
Class in Notes/Domino 6").

In this fifth article, we look at the enhancements to the NotesView, NotesViewColumn, and NotesUIView
classes . As with the previous articles, this one assumes that you are an experienced Domino application
developer with knowledge of the LotusScript programming language.

New functionality for views
Many of the new view and view column methods and properties in the Notes/Domino 6 LotusScript classes
NotesView, NotesViewColumn, and NotesUIView seem aimed at helping the harried developer who must
constantly respond to user requests for changes to the views in their applications. These new and enhanced
methods and properties allow developers to create scripts that non-developers can run to make changes to
views without the intervention of the developer:

There are seven new methods and five new properties in the NotesView class, and several other properties l

that were formerly read-only but are now read-write. Among the new features are the ability to lock the
design of an element and to prohibit design refresh so the view design cannot be overwritten. It is now
easier to count the number of documents in a view, and you can create scripts to allow users to change
view selection formulas and to create, copy, or remove columns.
The NotesViewColumn class has 17 new properties and 30 existing properties that have been expanded l

from read-only to read-write. You can use these to write scripts to change header styles (the font, point size,
and color); to change column text and formatting, sorting, and hiding columns; and even to change the
column formulas.
The NotesUIView class has three new properties and two new methods, but most important are its three l

new events, especially the InViewEdit event.

These new features of LotusScript allow views to be altered by scripts in actions, agents, or view events. If you
work in an organization where users frequently request changes to the selection criteria for views, the addition or
removal of a column, a change to the appearance of a column, or a change to a column formula, you'll want to
look closely at these new Notes/Domino 6 capabilities because they can probably make your life a lot easier.

Two other new capabilities greatly expand the way users will interact with views. The first allows non-designers
to create customized shared views: A user can run a script to create the custom view she wants with the

LotusScript: Programming views in Notes/Domino 6
www.lotus.com/ldd/today.nsf

© Copyright IBM 2

columns and formatting options she wants. The other uses the new InViewEdit event to allow users to create
and edit documents directly in a view.

In this article, we'll explore five example applications that use these new LotusScript features:
Programming the view selection formulal

Agents run from the action bar can rewrite the selection formula then redisplay the view. This can be a
powerful tool for helping users customize a view without constant intervention by a developer.
Programming the view's look and feel l

In the same way that you can program the view selection formula, you can program other attributes of the
view's display—column formulas and display formats are two examples.
Creating a new viewl

Using InViewEditl

Development aidsl

Some of the new features of LotusScript can help developers work more efficiently. Locking design
elements ensures that you and no one else can work on a design element, for example. You can enforce
your company's design standards by running an agent that standardizes all the views in an application—
setting the font, size, and color of header and column text—just before you release an application for testing.

You can download a Notes database named LSViews.nsf from the Sandbox that includes working code for
these examples. The database can be run locally or from a server, but you need to open and resave all the
agents in order to resign them with the appropriate ID and to set security to meet the requirements of your
organization.

Applications that use these LotusScript features are in effect redesigning the database, so users either need
Designer rights or permission to run the agents on behalf of a signer with sufficient rights. The easiest way to do
this is to set up a group that includes all the users and to give the group on behalf of rights. For more
information, see the LDD Today article, "Decoding the new Notes/Domino 6 Agent Features."

Example 1: Programming the view selection formula
Changing the view selection formula is a particularly useful example of giving users control that helps them to
focus on information. In the LSViews database, a view named All presents an HR application: The documents
list employees who are leaving a company, together with their department and last date of employment. The
view displays several shared actions in its action bar. All of these actions execute agents stored in the
application. (The reason for making them agents rather than actions is that actions cannot be run on behalf of.)
One of these agents, Date Range, allows the database user to enter beginning and ending dates and to reset
the selection formula for the view to display only documents that fall within that date range. The advantage of this
agent over a generic full-text search is that the view's structure remains the same. The view display maintains
category headings and the order of the documents in the view, both of which would be lost in a search.

The Date Range action uses an @Command formula to run an agent named Dates:
@Command([RunToolsMacro];"(Dates)"). (The name of the agent appears in parentheses because it is hidden
from the agent menu.) The agent prompts the user to enter starting and ending dates, then creates a selection
formula from the values the user enters:

Sub Initialize
'Prompts user for beginning and ending dates
'Changes selection formula to display docs between dates
Dim uiw As New NotesUIWorkspace
Dim uiview As NotesUIView
Dim view As NotesView
Dim formula As String
Dim one As String
Dim two As String
Dim ct As Integer
one = uiw.Prompt(Prompt_OKCANCELEDIT,"Enter the starting date","Start Date (use format MM/DD/YY)","")
two = uiw.Prompt(Prompt_OKCANCELEDIT,"Enter the ending date","End Date (use format MM/DD/YY)","")

LotusScript: Programming views in Notes/Domino 6
www.lotus.com/ldd/today.nsf

© Copyright IBM 3

formula = |SELECT Date > [| & one & |] & Date < [| & two & |]|
Set uiview = uiw.CurrentView
Set view = uiview.View
view.SelectionFormula = formula
Call uiw.ViewRebuild
ct = view.EntryCount
Messagebox "The number of docs in this view = " & ct,,"Count of docs in view"

End Sub

The new selection formula is created as a string named formula, which replaces the current selection formula in
the line

view.SelectionFormula = formula

that uses the new NotesView property SelectionFormula to set the formula in the view. Then another new
method of NotesUIWorkspace—ViewRebuild—rebuilds the view from the back-end (where it was created) and
displays it immediately.

(Notice that the last line of the agent uses the new EntryCount property of the view to display a count of the
documents in the view. Contrast this quick way of counting the documents in the view to the pre-Notes/Domino 6
way of looping through the view to count the documents. It is much easier and requires less coding.)

This script view action permanently sets the view selection formula until it is changed either by a designer or by
running the view action again. It is important to keep this in mind if a design template is running on the server
because it will overwrite the view when it refreshes. However, it is possible to prohibit a design refresh by using
the new NotesView property IsProhibitDesignRefresh. IsProhibitDesignRefresh is a Boolean. The design
cannot be changed if the "Prohibit design refresh or replace to modify" option is selected, as shown in the
following.

However, be forewarned—it can be changed with LotusScript. The By Dept. agent alerts the user if the property
is checked and asks whether or not to remove the prohibition. If he chooses to do so, the line

view.IsProhibitDesignRefresh = False

LotusScript: Programming views in Notes/Domino 6
www.lotus.com/ldd/today.nsf

© Copyright IBM 4

allows the user to overwrite the view with his new choices. Of course, the user has to either be listed in the ACL
as a Designer or be running the agent on behalf of someone who has rights to make design changes. The code
for this agent is as follows:

Sub Click(Source As Button)
'Changes selection formula to professions user chooses.
Dim uiw As New NotesUIWorkspace
Dim uiview As NotesUIView
Dim view As NotesView
Dim formula As String
Set uiview = uiw.CurrentView
Set view = uiview.View
If view.IsProhibitDesignRefresh Then

Messagebox "Design Refresh not allowed",,"The view does not allow changes."
askchange = uiw.Prompt(PROMPT_YESNO,"Change design refresh settings?", _
"Do you want to change the prohibition to change this view design?")
If askchange = 1 Then

view.IsProhibitDesignRefresh = False
Else

Exit Sub
End If

End If
one = uiw.Prompt(PROMPT_OKCANCELEDIT,"Choose a department","Enter department to display. (Leave
blank to display all.)","")
formula = |SELECT @Begins(Profession;"|& one & |")|
view.SelectionFormula = formula
Call uiw.ViewRebuild

End Sub

This agent uses the contents of the field Profession to select documents for display. It prompts the user to enter
the beginning of a department name or job title:

It uses this string in the selection formula as part of an @function—in the case of the example in the screen
above, SELECT @Begins(Profession; "Const").

Two other actions rewrite the view selection formula in similar fashion. The Marketing Only agent limits the view
to employees whose Profession field begins with Marketing by writing a selection formula:

formula = |SELECT @Begins(Profession;"Marketing")|

The Show All agent resets the view to display all documents in the database with the selection formula:

formula = |SELECT @all|

Example 2: Programming the view's look and feel
Just as you can program the view's selection formula, the new features of LotusScript allow you put other
attributes of the view under program control as well. In the view named All, these features are used in four
actions that change the formula and formatting of the first column in the view.

The two agents Small Display and Large Display change the typeface display of the employee names. Large

LotusScript: Programming views in Notes/Domino 6
www.lotus.com/ldd/today.nsf

© Copyright IBM 5

Display resets all four attributes of the typefont used in the first column of the view—typeface, size, style, and
color—by writing to four attributes of the column specified by view.Columns(0):

Sub Initialize
'Sets view to a standard color and font
Dim uiw As New NotesUIWorkspace
Dim uiview As NotesUIView
Dim view As NotesView
Dim vc As NotesViewColumn

Set uiview = uiw.CurrentView
Set view = uiview.View
'Set first column to bold and 12 pt
Set vc = view.Columns(0)
vc.FontFace = "Default Sans Serif"
vc.FontPointSize = 12
vc.FontStyle = VC_FONT_BOLD
vc.FontColor = COLOR_BLACK
Call uiw.ViewRebuild

End Sub

For the complete lists of available values for FontStyle and FontColor, see the Domino Designer 6 Help. The
FontFace value can be any name in the fonts list in the column Properties—just be careful to pick fonts that are
installed on the computers that will run your application. The colors are not limited to the 16 named color
constants. You can use the new NotesColorObject to set the font color—see the section titled "Setting More than
16 Colors" in "LotusScript: Rich text objects in Notes/Domino 6," a previous article in this series.

The Small Display agent is virtually identical to Large Display except for the values of the typeface attributes:

vc.FontFace = "Default Sans Serif"
vc.FontPointSize = 10
vc.FontStyle = VC_FONT_PLAIN
vc.FontColor = COLOR_BLACK

Notice that all four attributes of the text style are reset, even though some are not changed. This is because
settings that aren't explicitly changed default to their current values, and if you don't specify all the settings, you
may get some unexpected results.

Last/First and First/Last work in similar fashion to rewrite the column formula to change the display order of the
names. The Last/First agent writes a formula for the first column in the view that concatenates the contents of
fields that hold the employees last and first names, separated by a comma and a space:

Sub Initialize
Dim uiw As New NotesUIWorkspace
Dim uiview As NotesUIView
Dim view As NotesView
Dim vc As NotesViewColumn

Set uiview = uiw.CurrentView
Set view = uiview.View
'Sets first column to display Lastname, Firstname
Set vc = view.Columns(0)
vc. Formula = |Last + ", " + First|
Call uiw.ViewRebuild

End Sub

The First/Last agent reverses the formula order:

LotusScript: Programming views in Notes/Domino 6
www.lotus.com/ldd/today.nsf

© Copyright IBM 6

vc. Formula = |First + " " + Last|

If you try the action buttons in the All view, you notice that the various look-and-feel actions don't overwrite each
other. You can configure the view to show just the employee names in the Sales department in large text and
lastname/firstname order. There are times when taking a more global approach to setting view attributes can be
useful, as well: See the section "Enforcing Design Standards" later in this article.

Example 3: Creating a new view
You can use LotusScript in Notes/Domino 6 to add columns to an existing view or even to create a new view. In
this example, an agent called "1. Create View and Add Columns" builds a view from scratch, allowing the user to
pick the columns in the order he wants. This script requires the designer to create a master view that holds all
the columns that will be available in the agent. In this case, the view is called Main, and it contains a column for
each of the fields in the form Termination. The columns in the view do not have to be in any particular order, and
the view can be hidden, so that it doesn't appear in the list of views available to the application's users.

In the Initialize subroutine shown below, the script presents an input box for entering a new name for the view
the user is creating. Beginning at the line

Redim Preserve checkviewname(Ubound(db.Views))

it then checks the existing view names to verify that the new one is not already in use. If so, the script returns to
the CHOOSENAME label and prompts again for a new view name. The line

Set UsersView = s.CurrentDatabase.CreateView(newviewname)

uses the new CreateView method of the NotesDatabase class. Because all views are created with one default
column that contains the doc number, the line

Call UsersView.RemoveColumn(UsersView.ColumnCount)

removes that column with the new RemoveColumn method of the NotesView class. The script then finds all the
columns in the Main view and creates an array, called allcols, with their header titles. The final Do Loop While
loop creates a prompt that displays the array allcols as a list of columns for the user to choose from. The loop
continues as long as the user indicates that he wants to add another column to the new view.

When the user makes a selection for a column in the new view, the script uses a For-Next loop to go through the
column titles in Main to locate the correct column. When the script locates the column, it then copies that column
to the new view. The line

Set col2 = UsersView.CopyColumn(col1, K)

uses the new method CopyColumn to do the copying. Col1 refers to the column in Main, and K is the column
position in the new view. K increments as the user adds columns to the new view, so each new column is
positioned after the previous column. Otherwise, all columns would be added to the first column position in the
view, moving existing columns to the right.

The script then prompts the user for additional columns and goes through the For-Next loop again finding the
column position in the Main view and copying the column to the new view. This continues until the user indicates
at the prompt that she does not want to add more columns to the new view.

The If statement beginning

If col2.Position = 1 Then

checks for the column's position in the new view. If the column is the first one, the user is prompted to decide
whether or not to sort that column. After the If statement, the line

LotusScript: Programming views in Notes/Domino 6
www.lotus.com/ldd/today.nsf

© Copyright IBM 7

col2.HeaderFontColor = COLOR_BLUE

sets all column headers to the color blue. See the "LotusScript: Programming views in Notes/Domino 6 sidebar"
for the code example.

Example 4: Using InViewEdit
The new InViewEdit event allows users to edit or create documents directly in a view without opening the
underlying document. This can be very handy. In-view editing would not be satisfactory for filling in fields that
require several checkboxes or radio buttons, and it even has limits for lists, but it can be useful for rapid data
entry or for quickly editing a field that needs a value changed.

For example, if a new field is added to a form, and someone has to go through all the existing documents
updating that field, it may be faster and easier to do it in a specially created view rather than opening, editing,
and saving each document. Or if someone is creating a series of new documents that contain only a few simple
fields, using a view to create the documents could be preferable.

The InViewEdit event occurs when a user clicks once (double-clicking still opens the document) on an editable
column or uses Ctrl + click to create a new document. It requires some setup in the view design.

The view must include at least one column with a field value assigned. On the Column Properties box Basics
tab, select the Editable column option:

In the View Properties box Options tab, select the "Create new documents at view level" option. (If you only want
users to be able to edit existing documents from the view, do not select this option.)

LotusScript: Programming views in Notes/Domino 6
www.lotus.com/ldd/today.nsf

© Copyright IBM 8

When you open a view with this option selected, you see a line that says "Ctrl-Click here to add a new document"
in the last row of your view:

If you press the Ctrl key while you click the mouse, an editing box appears in the editable column, allowing you to
enter data. Even though the user can enter text in the column's editing box, nothing happens unless the
designer has scripted the view's InViewEdit event. To use the InViewEdit event, you need to use and understand
the parameters that follow. The basic syntax is:

InViewEdit(Source As NotesUIView, RequestType As Integer, ColProgName As Variant, ColumnValue As
Variant, Continue As Variant)

By breaking it into its component parts, you can see how this event works:
Source As NotesUIViewl

Refers to the current, open view and contains all the properties and methods of the NotesUIView class.
RequestType As Integerl

This integer indicates the kind of request being made in the view; request numbers are 1 through 4. One is
reserved for query requests and is not available to use. A request type of 1 is automatically generated when
a user clicks a column in a row to edit it or uses Ctrl + click to create a new document. Two is a request type
to validate the field in the column, 3 is a request type to save a document, and 4 is a request type to create a
new document.
ColProgName As Variantl

Refers to the programmatic name of the editable column or columns. When the request is a type 1 or 2 (a
query or a validation) the ColProgName is the current editable column in a view. As request type 1 or 2
ColProgName has only one element and therefore is always the array position numbered 0. When it is a
request type 3 or 4, ColProgName is the programmatic name of the column currently being acted upon,
starting with the array position number 0. IBM recommends that the programmatic name of the column
(which can be found on the Advanced tab of the Column Properties box) be the same as the actual field
name in the column. If it is not, you have to separately check each programmatic name before setting its
value. (Notes automatically makes the programmatic name the same as the field name entered when you
create the column, so in most cases you do not have to make changes.) Another issue to keep in mind is
that if the programmatic name is not the same as the field name, the value may not even appear in your

LotusScript: Programming views in Notes/Domino 6
www.lotus.com/ldd/today.nsf

© Copyright IBM 9

opened document. For example, if you change a column field formula called Date to @Date(Date), the
programmatic name changes to something like $2. You have to look for a programmatic column name of
$2 in your script because it saves the value you enter in that column as a field called $2 and not in the field
named Date.
ColumnValue As Variantl

An array of the values in the editable column or columns referenced by ColProgName; the array defaults to
string values and the array elements correspond one-for-one with ColProgName.
Continue As Variantl

A Boolean that defaults to true, it can be set to false if a validation fails.

Creating an editable view
Let's take a look at a very simple InViewEdit event. You can try this in the LSViews database by opening the view
named InViewEdit/Edit View 1. The script for this view is shown below. It performs only one request type—type
4—to create and save a new document and assumes there is only one editable column. In the first two lines, the
script declares the NotesDocument and instantiates db, the database object. When the user executes the Ctrl +
click command or when he clicks an existing editable column, the InViewEdit script is triggered. (Note: In this
example, the editable column opens an editing box on an existing document, but it does not save the existing
document. That requires a different request type.)

The script first creates a new document and gives the form field a name. Notes automatically finds the editable
column, Colprogname(0), and gets its value. In this case, Colprogname(0) is equal to the programmatic name
of the first column: Name. ColumnValue(0) is equal to the value the user types into the editable first column row.

The line

Call doc.ReplaceItemValue(Colprogname(0), ColumnValue(0))

then uses the ReplaceItemValue method of the NotesDocument class to replace the empty field that matches
the column's programmatic name with the value the user typed in. The line

Call doc.Save(True, False, True)

saves the document.

Sub Inviewedit(Source As Notesuiview, Requesttype As Integer, Colprogname As Variant, Columnvalue As
Variant, Continue As Variant)

Dim doc As NotesDocument
Set db = Source.View.Parent
'Check for request to save a new document
If Requesttype = 4 Then

'Create a new document
Set note = db.CreateDocument()
'Give the doc form name
note.Form = "TERMINATE"
'Add the value to the document in the designated column
Call doc.ReplaceItemValue(Colprogname(0), ColumnValue(0))
'Save the document
Call doc.Save(True, False, False)

End If
End Sub

If the view has more than one editable column, replace the line

Call note.ReplaceItemValue(Colprogname(0), ColumnValue(0))

with a For loop, so the script loops through all the editable columns and fills in the values. See the example

LotusScript: Programming views in Notes/Domino 6
www.lotus.com/ldd/today.nsf

© Copyright IBM 10

code in InViewEdit/Edit View 2:

For i = 0 To Ubound(Colprogname)
'Add the value to document in the designated column
Call note.ReplaceItemValue(Colprogname(i),ColumnValue(i))

Next

The only editing action a user can perform in this example view is to create and save a new document because
request type 4 is the only request handled by the code. This may cause some confusion among users . Because
they can edit any document in an editable view, they may expect changes to existing documents to be saved. If
you want to deny users the ability to edit existing documents the best UI solution is to add an If statement that
handles request type 3 by displaying an message box that spells out this restriction. You could do this by
inserting the following code just after the If Requesttype = 4 statement in the example above:

Else
If Requesttype = 3 Then

Messagebox "You cannot edit existing documents in this view", , "Error"
End If

Editing and validating fields
The Domino Designer Help that comes with Notes has several examples for InViewEdit scripts that use the
Select Case statement to validate and edit as well as to create new documents and save them in the view. This
coding technique breaks up the request types into blocks of easily read and managed code.

The script below illustrates the basics of handling all the available request types. You can find this example in
InViewEdit/Edit View 3.

Sub Inviewedit(Source As Notesuiview, Requesttype As Integer, Colprogname As Variant, Columnvalue As
Variant, Continue As Variant)

'Define constants for request types
Const QUERY_REQUEST = 1
Const VALIDATE_REQUEST = 2
Const SAVE_REQUEST = 3
Const NEWENTRY_REQUEST = 4

Dim db As NotesDatabase
Dim doc As NotesDocument
Dim caret As String

Set db = Source.View.Parent
caret = Source.CaretNoteID
If caret = "0" Then Exit Sub

Set doc = db.GetDocumentById(caret)

Select Case RequestType
Case VALIDATE_REQUEST
'Validate for empty column value

If Fulltrim(ColumnValue(0)) = "" Then
Messagebox "Field has no value",, "You must enter a value in the column."
Continue = False

End If

Case SAVE_REQUEST
For i = 0 To Ubound(Colprogname)

'Add the value to document in the designated column

LotusScript: Programming views in Notes/Domino 6
www.lotus.com/ldd/today.nsf

© Copyright IBM 11

Call doc.ReplaceItemValue(Colprogname(i),ColumnValue(i))
Next
'Save the document
Call doc.Save(True, False, True)

Case NEWENTRY_REQUEST
Set doc = db.CreateDocument()
'Give the doc form name
doc.Form = "TERMINATE"
For i = 0 To Ubound(Colprogname)

'Add the value to document in the designated column
Call doc.ReplaceItemValue(Colprogname(i),ColumnValue(i))

Next
Call doc.Save(True, False, True)

End Select
End Sub

The four constants that begin the script are descriptive of the four request types handled in the InViewEdit event.
It is not really necessary to include the QUERY_REQUEST line because currently it cannot be used by
designers.

The lines referring to the caret are a reference to a document. CaretNoteID is a property of the NotesUIView. It is
the document that is highlighted, or is being edited, in the current open view. The CaretNoteID is an
alphanumeric string that identifies the document. If the caret returns a value other than zero, then the document
exists and the editable columns can be validated and saved. If the caret returns a zero, then the document does
not exist.

In that case, it means the user is creating a new document. Execution of the event script is stopped by the line

If caret = "0" Then Exit Sub

The view opens an edit box in the selected column and waits for the user to enter a value. The script is executed
again when the user either tabs to the next column or presses Enter to indicate he is done with the document.

The VALIDATE_REQUEST case simply checks to make sure a value has been entered in the column's editing
box. If no value has been entered, it displays a message requesting the user enter text . "Continue" is set to
False to stop the event and return control to the user.

The SAVE_REQUEST is really a subset of NEWENTRY_REQUEST. It just doesn't create the new document.

Validating fields
Validating fields in in-view editing adds complexity to the code. The values edited in the view are always returned
as text values. If, for example, you have a date field in the editable column, Notes treats whatever you enter in that
column as text. However, you still want to make sure that the values entered are correct so that if you open the
document later, or if you run a background agent to refresh fields, you do not get errors.

If you try to enter invalid text, Notes always throws up a message box like the one shown below on the validation
error.

LotusScript: Programming views in Notes/Domino 6
www.lotus.com/ldd/today.nsf

© Copyright IBM 12

In the following example, found in InViewEdit/Edit View 4, the Select Case statement for VALIDATE_REQUEST
contains another Select Case statement—Select Case Colprogname(0). The Colprogname(0) corresponds to
the column the user is editing at the time the validation occurs. In the following case, if the user has entered data
in the first column, named Name, the script moves to the Case Name and checks for an empty column. If the
user has entered data in the second column, named Date, then it validates using the Case Date.

In validation, the Colprogname index is 0. Zero is the column where the user is currently editing, and because
only one column can be edited at a time for validation purposes, the currently edited column is always zero.
Thus, the select statement is Select Case Colprogname(0).

Select Case RequestType
Case VALIDATE_REQUEST

Select Case Colprogname(0)
Case "Name"
'Validate for empty column value

If Fulltrim(ColumnValue(0)) = "" Then
Messagebox "Field has no value",, "You must enter a value in the column."

Continue = False
End If

Case "Date"
If Isdate(ColumnValue(0)) Then

Continue = True
Else
Messagebox "The value you entered is not a date",,"Date format 'MM/DD/YY' required"

Continue = False
End If

End Select

The first case, Name, checks for empty columns in the If statement beginning

If Fulltrim(ColumnValue(0)) = "" Then

and if it finds no value, it presents the message box and returns control to the user. When the user enters a
value and presses the Tab or Enter key, the script resumes.

The second case, Date, checks to see if the entry is an acceptable date format and prompts the user to try again
if it is not. (Even though the messagebox in the example specifies a MM/DD/YY format, MM/DD, M/D, and M.D are
also accepted by the Isdate function.)

It is important to remember that even though the data may be entered in a date format it will be saved as a text
string. The same is true of numbers: the Domino Designer Help includes an example of using IsNumeric to test
for a number, but numbers also are saved as text strings if entered through a view. In many applications, text
may be all that's needed, so you're finished. But in others the entry may need to be converted to another data
type, which adds another layer of complexity to the script.

Converting dates and case
What happens if you have a list or a radio field that allows only one of a set of preselected values? In the
following example, we take the field named Processed, a radio field, and force the user to enter one of the
acceptable values. Unfortunately, you cannot display a picklist in InViewEdit, but you can validate the value, and,
as in this case, proper case it as well.

You can see the code for this example in the InViewEdit event for the view InViewEdit/Edit View 5. In this
example, the user can edit existing documents only. The second and third columns are both editable.

In the example InViewEdit/Edit View 4, the date could be tested for a legitimate date format, but it was still written
into the document as a text value. In this example, the script converts the date entered in the second column into

LotusScript: Programming views in Notes/Domino 6
www.lotus.com/ldd/today.nsf

© Copyright IBM 13

a true time/date field. In the third column, the user enters one of five values or is prompted if he enters an
incorrect value. In addition, the value is put into proper case.

To prepare the view, add the line

%INCLUDE "c:\Lotus\Notes\lsconst.lss"

to the View's Global options. The LotusScript constants file contains the Public constant SC_ProperCase, which
the script uses.

In the view's declarations, add Dim Pval As String and Dim Dval As Variant. Pval is a string value for the
Processed field and Dval is a variant for the time/date field.

The validation for the Date column is almost the same as it was in the View 4 example. Note that the main
difference is the addition of the line Dval = Cdat(columnvalue(0)). This line converts the value the user enters
into a date and assigns it to the Dval variable of type variant.

Case "Date"
If Isdate(ColumnValue(0)) Then

Dval = Cdat(columnvalue(0))
Continue = True
Else
Messagebox "The value you entered is not a date",,"Date format 'MM/DD/YY' required"
Continue = False

End If

The Process field is handled differently. First a string array (named elements) of the five values the field can hold
are created. Then in the Forall loop the script checks the value the user entered against the values in this
elements array. The elements and the column value are converted to lowercase to make the comparison. If the
column value does not match one of the elements, a message box displays a list of the values the user may
enter, and he is returned to the edit box in the view.

If the column value is legitimate, it still must be converted to proper case in case the user did not enter it
correctly. The last line converts the value to a text string and then proper cases that string and assigns it to the
variable Pval.

Case "Processed"
'list of values user can enter in Processed editable column
Dim elements(4) As String
elements(0) = "Completed"
elements(1) = "In Progress"
elements(2) = "On Hold"
elements(3) = "Not Started"
elements(4) = "Discarded"

'Check for a value not in "Processed" list
Dim flag As Boolean
flag = False
Forall element In elements

If Lcase(element) = Lcase(Columnvalue(0)) Then
flag = True

Exit Forall
End If

End Forall
If Not flag Then
'Create a list of values the user can enter in editable column and display to user

Dim msg As String
Forall element In elements

LotusScript: Programming views in Notes/Domino 6
www.lotus.com/ldd/today.nsf

© Copyright IBM 14

msg = msg & element & Chr(10)
End Forall
Messagebox msg,, "Value must be one of the following"
continue = False

End If
'Get value user entered as a string
cval$ = ColumnValue(0)
'Convert the string to propercase
Pval = Strconv(cval$,SC_ProperCase)

If the Pval and Dval variables do the conversions in request type 2, they must be created in the Declarations
because they must persist until the values are saved to the document. They do not need to be global if converted
during request type 3 or 4. When it comes time to save the document, the current column value (i) is compared
to the Pval variable. If it is a match, then the column value is changed to the Pval value and added to the
document.

The date column doesn't use the same kind of comparison because there is no way to do a true match—Pval is
a variant and the column value of the date the user entered is a string. Here the script checks the Colprogname,
and if it is Date, then it gets the Dval variable and replaces the column value with it.

Case SAVE_REQUEST
For i = 0 To Ubound(Colprogname)

'Add the value to document in the designated column
'If the column value matches value in Pval variable, it is used instead of the actual column value
If Lcase(ColumnValue(i)) = Lcase(Pval) Then

ColumnValue(i) = Pval
Call doc.ReplaceItemValue(Colprogname(i),ColumnValue(i))

Else
If Colprogname(i) = "Date" Then
ColumnValue(i) = Dval
Call doc.ReplaceItemValue(Colprogname(i),ColumnValue(i))

Call doc.ReplaceItemValue(Colprogname(i),ColumnValue(i))
End If

End If
Next
Call doc.Save(True, False, True)

These examples show the basic building blocks for in-view editing. As you develop more complex code, keep in
mind that the script starts evaluating every view-editable field in the row starting with the column clicked and
going to the right as the user presses the Tab key. If your view has 12 columns and all are editable, the
InViewEdit event processes all 12 columns. If you want to allow a user to edit only one field from a view, do not
make other fields in the row editable too.

Example 5: Development aids
Some of the new features of LotusScript can help you work more efficiently as you design your application. Here
are two examples—locking design elements, which ensures that you and no one else can work on a design
element, and using the new access to column properties as a way to automate compliance with design
standards.

Locking a design element
Notes/Domino 6 allows designers to lock three kinds of design elements—agents, forms, and views. Locking
prevents those who are not listed as lockholders from changing the element. If Peter Purple has a lock on the
view design and he is the only lockholder, then he is the only one who can make design changes and save
them as long as the lock is enabled with his name. More than one person or group can be listed as lockholders.
If Peter Purple and Brian Blue are both listed as lockholders, then either one of them can unlock the design. A
lockholder must disable the lock to let someone else edit and save the design. Locking writes the name of the

LotusScript: Programming views in Notes/Domino 6
www.lotus.com/ldd/today.nsf

© Copyright IBM 15

current lockholder to the $Writers field and the date the lock was made to the $WritersDate field of the design
element.

In order for locking to work, the database must be assigned an Administration server in the ACL. This server is
also referred to as the Master Lock Server. If the database designers are all working from a network server, and
not offline, locking can occur. If a designer is working offline, a provisional lock is placed on the design element.
At the time the database is replicated back to the server, if no one else has tried to make a change, the changes
the provisional lockholder made go into effect.

(You can also lock and unlock a view, agent, or form in Domino Designer using Lock Design Element and
Unlock Design Element on the Design menu. You see a padlock icon beside locked design elements. If you are
already in Domino Designer, using this menu is probably easier than running an agent. However, using the
Design menu only allows you to lock or unlock an element that holds your own name as lockholder—unless you
are the manager of the database. You cannot lock the design element with someone else's name or with a
group or a list of names unless you run a script.)

An example of an agent that performs locking and unlocking is in the agent script below, titled Lock-Unlock
Design Element. This agent checks to make sure that the design element can be locked (that is, that design
refresh or replace has not been prohibited on the design element). Then it checks to determine if the element is
locked. If so, it displays a message box with the name or names of the lockholder. If the lockholder is also the
current user and the element is locked, it prompts the user asking if he wants to unlock the element. If the
element is not locked, the script prompts the user asking if he wants to lock it.

A new Notes/Domino 6 property, IsDesignLockingEnabled, is used in the line

db.IsDesignLockingEnabled = True

This property is a Boolean. Setting it to false keeps a design element from being locked. The NotesView class
has a new property called LockHolders, an array containing the names of the groups or people who have the
right to lock or unlock the design element. The line

If Lholders(0) = "" Then

checks the LockHolders field. If it has no value, then the design element is not locked, and the script prompts
the user, who must be at least a Designer in the ACL, to lock the database by entering the names of the persons
who will have the rights to edit or unlock the design element. If the user enters one or more names when
prompted in the line

qu2 = uiw.Prompt(PROMPT_OKCANCELEDIT, "Lock Holders?", "Who should the lock holders be? If you leave
the box blank your name will be added as the lockholder.")

the line Call view.Lock(qu2,True) locks the element with the names of the Lock Holders, and no one else can
edit it.

If the element had been locked by the current user and he wishes to unlock it, the line Call view.UnLock unlocks
it. If the design element is locked and the current user did not lock it, he sees only the message box with the
name of the current lockholder.

Sub Initialize
Dim session As New NotesSession
Dim uiw As New NotesUIWorkspace
Dim uiview As NotesUIView
Dim db As NotesDatabase
Set db = session.CurrentDatabase
Dim view As NotesView
Dim cun as String
Dim qu as String

LotusScript: Programming views in Notes/Domino 6
www.lotus.com/ldd/today.nsf

© Copyright IBM 16

Dim qu2 as String
Dim LH as String
Dim ans as String

db.IsDesignLockingEnabled = True
cun = session.CommonUserName
On Error Goto errh
'Get view
Set uiview = uiw.CurrentView
Set view = uiview.View
'Check if view design is locked
Lholders = view.LockHolders
If Lholders(0) = "" Then

Messagebox "There are no locks on the design of this view",,"Status of locking"
qu = uiw.Prompt(PROMPT_YESNO,"Change status?","Do you want to lock this view design?")
If qu = 1 Then

qu2 = uiw.Prompt(PROMPT_OKCANCELEDIT, "Lock Holders?", _
"Who should the lock holders be? If you leave the box blank your name will be added as the
lockholder.")

Call view.Lock(qu2,True)
Messagebox "The view name " &view.Name &" is locked",,"Lock status"
Else
Exit Sub

End If
End If

'Recheck view holders
Lholders = view.LockHolders
Forall L In Lholders

LH = LH & L & Chr(13)
End Forall
Messagebox "The lockholders on the design of this view are " & Chr(13) & LH,,"Status of locking"
Forall L In Lholders

If Trim(L) = cun Then
ans = uiw.Prompt(PROMPT_YESNO,"Change status?","Do you want to unlock this view design?")
If ans = 1 Then

Call view.UnLock
Else
Exit Sub

End If
End If
End Forall

errh:
If Err() = lsERR_NOTES_LOCKED Then

Print "View NOT locked - " & view.Name
Else

Messagebox "Error " & Err() & ": " & Error(),, "Error"
End If
Exit Sub

End Sub

Enforcing design standards
If you work with other designers, or even if you work alone, you may find it tedious to make your views look
consistent within an application or to adhere to company standards. Using new LotusScript methods and
properties, you can write an agent that standardizes the design of all the views in an application—setting the
background color, font, size, and color of header and column text, even column width—just before you release

LotusScript: Programming views in Notes/Domino 6
www.lotus.com/ldd/today.nsf

© Copyright IBM 17

an application for testing. This was not possible in previous releases of Notes/Domino because these
characteristics were read-only. Now they are read-write.

To see how this works, try the two agents 4. Set View Type 1 and 5. Set View Type 2. These agents work on just
the current view. The code is very similar to the script for Large Display and Small Display (see the earlier
section "Example 2: Programming the view's look and feel"), except that it adds additional lines that set the
background color for the view and modify the typefont used in the column headers.

What's missing is a way to run the agent on all the views in the database, and that is provided in the agent 6.
Standardize All Views below. It sets a variable, I, that is the number of views in the current database, then runs a
For loop to select each view in turn and to rewrite the values of the view's background color and column display
attributes:

Sub Initialize
'Loops through all views and sets column and header attributes to standards
Dim uiw As New NotesUIWorkspace
Dim view As NotesView
Dim vc As NotesViewColumn
Dim db As NotesUIDatabase

Set db = uiw.CurrentDatabase
'Get number of views in database
Dim J As Integer
Dim i As Integer

For J = 0 To Ubound(db.Database.Views)
'Begins changing each view
Set view = db.Database.Views(J)

'Set view background color
view.BackgroundColor = COLOR_WHITE

'Set first column to bold and 12 pt.
Set vc = view.Columns(0)
vc.FontFace = "Default Sans Serif"
vc.FontPointSize = 12
vc.FontStyle = VC_FONT_BOLD
vc.FontColor = COLOR_BLACK

'Set all other columns to plain and 10 pt.
For i = 1 To Ubound(view.Columns)

Set vc = view.Columns(i)
vc.FontFace = "Default Sans Serif"
vc.FontPointSize = 10
vc.FontStyle = VC_FONT_PLAIN
vc.FontColor = COLOR_BLACK

Next
'Set all headers to same font color, face, and point size.

For i = 0 To Ubound(view.Columns)
Set vc = view.Columns(i)
vc.HeaderFontFace = "Default Sans Serif"
vc.HeaderFontPointSize = 10
vc.HeaderFontStyle = VC_FONT_BOLD
vc.HeaderFontColor = COLOR_DARK_BLUE

Next

Next

LotusScript: Programming views in Notes/Domino 6
www.lotus.com/ldd/today.nsf

© Copyright IBM 18

Call uiw.ViewRebuild
End Sub

Notice that again all four font attributes are set for both the column text and header text, just to prevent surprises.
When all the views have been processed, the current view is rebuilt to display the changes. If the database
includes views that you don't want to standardize, you can set the Prohibit design refresh option for those views
or write your agent to prompt you for permission before it resets a view's attributes.

Conclusion
These examples are only an introduction to the changes in LotusScript for Notes/Domino 6. There are many
more attributes of views and columns that you can program because of the change in properties from read-only
to read-write in the NotesView and NotesViewColumn classes. The InViewEdit event in the NotesUIView class
adds new rapid editing capabilities. These changes mean that in Notes/Domino 6 you gain ability to manipulate
not only the data in views but also the UI of views. For the first time, you can allow non-designers to make
changes in views—a good thing for Domino developers because it holds the promise of considerably reducing
the drudgery of application maintenance.

ABOUT THE AUTHORS
Sally Blanning DeJean and David DeJean have been working with and writing about Lotus Notes and Domino for as long as
they've existed. They were co-authors of the very first book about Notes, Lotus Notes at Work . Sally, a CLP Principal, has
written other books about Notes and is a full-time Notes/Domino developer. David, a CLP, has been an editor and writer for
several computer publications. He is a partner in DeJean & Clemens, a firm that develops Notes and Internet applications and
technical and marketing communications.

LotusScript: Programming views in Notes/Domino 6 sidebar
www.lotus.com/ldd/today.nsf

© Copyright IBM 19

LotusScript:Programming views in Notes/Domino 6 sidebar
The following is a code example for creating a new view.

Declarations
Dim db As NotesDatabase
Dim Templateview As NotesView
Dim UsersView As NotesView
Dim col1 As NotesViewColumn
Dim col2 As NotesViewColumn
Dim J As Integer
Dim K As Integer
Dim L As Integer
Dim allcols () As String
Dim checkviewname () As String

Sub Initialize
Dim s As New NotesSession
Dim ws As New NotesUIWorkspace

Set db = s.CurrentDatabase
Set Templateview = db.GetView("MAIN")
'Asks for name of new view

CHOOSENAME:
newviewname = Inputbox("Name for new view?","What do you wish to name this view?")
If Trim(newviewname) = "" Then

Messagebox "Stopping processing",,"You did not enter a name for the view."
Exit Sub

End If
'Check for existing view name
Redim Preserve checkviewname(Ubound(db.Views))
For L = 0 To Ubound(db.Views)

checkviewname(L) = db.Views(L).Name
If checkviewname(L) = newviewname Then

Messagebox "The view name you entered is already being used. Please pick another." _
,,"View Name already in use"
Goto CHOOSENAME

End If
Next

'Create new view with name from user input
Set UsersView = db.CreateView(newviewname)
'Remove default column created with view
Call UsersView.RemoveColumn(UsersView.ColumnCount)
'Find number of columns in Templateview
I = Ubound(Templateview.Columns)

Redim Preserve allcols(I)
'Create an array of column titles to be used in prompt
For J = 0 To I

LotusScript: Programming views in Notes/Domino 6 sidebar
www.lotus.com/ldd/today.nsf

© Copyright IBM 20

allcols(J) = Templateview.Columns(J).Title
Next
K = 1

Do
chosencol = ws.Prompt(Prompt_OKCancelList,"Choose column to insert", _
"Select from list of column names.","",allcols)
'Find column position
For J =0 To Ubound(Templateview.Columns)
If Templateview.Columns(J).Title = chosencol Then
Set col1 = Templateview.Columns(J)
End If
Next
Set col2 = UsersView.CopyColumn(col1, K)
If col2.Position = 1 Then

asksort = ws.Prompt(PROMPT_YESNO,"Sorting for first column?", _
"Do you want to sort the first column?")
If asksort = 1 Then

col2.IsSorted = True
End If

End If
'Set the font color for the header
col2.HeaderFontColor = COLOR_BLUE
K= K+1

Loop While ws.Prompt(PROMPT_YESNO,"Additional columns?","Do you want to add another column to the view?")
Messagebox "View completed",,"Your view has been built."

End Sub

