

Part 2

by Carol Zimmet
and Amy E. Smith

Level: Advanced
Works with: Domino 5.0
Updated: 09/01/2000

This is the second in a series of articles that identifies and clarifies issues and
misconceptions that Domino administrators, users, consultants, and Business
Partners often confront. These articles discuss concepts, options, and
features whose use or non-use has a direct impact on Domino server
performance or deployment and capacity-planning decisions. They attempt to
set the record straight and make recommendations on how to proceed.

When it comes to improving Domino server performance and deployment and
capacity planning, choosing the best options and making the best choices is a
complex task. Server performance and scalability issues span multiple areas
(such as mail delivery, database management, and even application design)
and multiple platforms, and they are highly dependent on server
configurations and the inter-relationships of Domino components.

In Part 1 of this series, we looked at clearing up misconceptions and
erroneous information being promulgated in the user community about the
Domino server, as well as some recent new features that are not yet in
widespread use (although they ought to be). This installment discusses some
proactive steps that administrators can take to improve system performance,
including adjusting system parameters, optimizing user files, and
implementing sound application development practices.

It is important to note that most of the metrics and information discussed here
is not new. However, the Domino Server Performance Team is looking at this
information in new ways, in our efforts to make performance analysis more
like a science (and so definable) rather than an art (and more like guesswork).
For Domino system administrators, implementing definable performance
analysis may mean being open to new ideas and trying new things, as well as
minimizing risk.

Even large-scale systems need tweaking to achieve
higher scalability
In this case, the large-scale system in question is Sun Microsystems'
Solaris/SPARC platform. The Domino Server Performance Team achieved its
scalability goals on Solaris/SPARC by tweaking a system-tunable parameter
found in /etc/system in order to increase the number of file descriptors
(fds)/process. Sun recommends that the default limit of 1024 file descriptors
(fds)/process can be increased on the Solaris/SPARC platform (release 2.6
onwards; 2.8 is the current release) for applications that use the poll system
call, like Domino. (The default value should be left at 1024 for applications
that use the select system call.) The Performance Team tried this and
increased the Domino system-wide file descriptor (fd) limit to 64 K. As a
result, we now recommend this as one of the required steps in achieving a
highly scalable configuration.

To increase the number of file descriptors limit to 64 K, append the following
line to the file /etc/system (please see the caveat below):

set rlim_fd_max=65536

Caution: After doing this, you must reboot your Solaris/SPARC system for the

© Copyright 2000 Iris Associates, Inc. 1

Putting the right spin on Domino server performance (Part 2) "Iris Today" webzine at http://www.notes.net

change to become effective. Be aware, however, that if you make a mistake
and enter a very large number, your system may not come back up.

The number of file descriptors required by different server protocols varies.
NRPC, for example, is a persistent connection protocol; each user requires
about 4 to 5 file descriptors (for each database open and for a connection at
the network layer), so 10,000 NRPC users requires about 50 K of file
descriptors. IMAP, another persistent connection protocol, requires 3 to 4 file
descriptors per user.

Note: As of R5.0.5, the use of AIOThreads is the strategy for effective system
usage (that is, the server will indicate at startup if it detects thread pools that
are disabled).

Considerably fewer file descriptors are needed for HTTP, which is a
connectionless protocol. In fact, Sun recommends 8 K in their NotesBench
R5Webmail reports. You can, however, set the value to 64 K, as this is merely
a limit and no resources are allocated for it.

See the Sun Solaris and Domino tuning documentation available on the
Lotus IT Central Performance Zone (click on the Technical Library graphic)
and Sun's docs.sun.com, which covers additional parameters and provides
greater detail about what has worked successfully in other scenarios.

To increase the number of users, spread their data
files on multiple drives
Administrators can increase the number of active users and improve disk
access performance on their servers by taking advantage of the fact that the
files can be distributed across multiple drives. The Performance Team
recently did some testing that included evaluation of a mail workload from the
browser (a variation of the traditional Webmail workload) on single, two-drive,
and four-drive configurations. This testing validated that more users can be
added on multidrive systems. (Note that the results presented here apply to
all mail configurations, as well as application file configurations.)

First, the team tested a configuration where all mail files existed on the same
drive (I:). Testing was successful for 1,000 users and their associated mail
files. Attempts were made to increase the number of users (in increments of
500) to determine the upper limits for the number of users on a single-drive
system. However, the team was only able to increase the number of users to
1,500; at this point, we observed disk I/O bottlenecks (see the disk I/O metrics
in the table below). Attempts to increase the number of users to 2,000 users
failed totally, as the system was saturated and could not maintain that user
count. In addition, variation in stats like response time increased as
Mail.Waiting increased. (The user count achieved with this evaluation effort
is a number only applying to this test configuration.)

Note: You can also review fields from the Domino console command, sh dbs,
as an alternate source of database utilization information. See the Iris Today
articles Optimizing server performance: Semaphores Part 1 and Part 2 for
more information on this.

Next, the team distributed the user mail files across two drives—actually on
two physical drives on the same controller port. As a result, they were able to
increase the number of users, leverage more of available processor power,
and accomplish more Domino.Requests.Per1Minute.Total. The resulting
disk I/O metrics indicated that the access rate was within a reasonable range
(based on production level standards).

The team then took the evaluation one step further, by measuring the impact
of distributing the data files across four drives. The following tables show

© Copyright 2000 Iris Associates, Inc. 2

Putting the right spin on Domino server performance (Part 2) "Iris Today" webzine at http://www.notes.net

some of the key system metrics from these tests:

1,500 Users -- 1 Drive

Key Metrics Observed Average Maximum

% Total Processor Time 46.90 84.92

Available MBytes 1,516,109.97 1,692,352.00

Average Disk Queue Length
(I:)

1.62 5.53

Average Disk Queue Length
(J:)

n/a n/a

Mail.Waiting 0.94 4.00

Server.Mailboxes 4

Domino.Config.ActiveThreads
. Max

100

Context Switching 2,298.12 8,591.47

Domino.Requests.Per1Minut
e. Total

823.28

Domino.Requests.Per1Minut
e. Total (average)

6.53

Mail.Delivered (average) 53.51

2,000 Users -- 2 Drives

Key Metrics Observed Average Maximum

% Total Processor Time 53.75 58.61

Available KBytes 934,232.30 972,044.00

Average Disk Queue Length (I:) 2.39 3.93

Average Disk Queue Length (J:) 2.05 3.46

Mail.Waiting 1.13 3.00

Server.Mailboxes 4

Domino.Config.ActiveThreads.
Max

125

Context Switching 2,402.08 2,905.43

Domino.Requests.Per1Minute.
Total

1,124.93

Domino.Requests.Per1Minute.
Total (average)

4.69

Mail.Delivered (average) 79.92

© Copyright 2000 Iris Associates, Inc. 3

Putting the right spin on Domino server performance (Part 2) "Iris Today" webzine at http://www.notes.net

2,000 Users -- 4 Drives

Key Metrics Observed Average Maximum

% Total Processor Time 52.75 55.54

Available KBytes 990,532.10 1,037,996.00

Average Disk Queue Length (I:) 0.95 1.12

Average Disk Queue Length (J:) 0.71 0.80

Mail.Waiting 1.06 3.00

Server.Mailboxes 4

Domino.Config.ActiveThreads.
Max

125

Context Switching 2,356.45 2,605.77

Domino.Requests.Per1Minute.
Total

1,114.92

Domino.Requests.Per1Minute.
Total (average)

4.74

Mail.Delivered (average) 79.34

The metrics shown above are those typically used for evaluating system
performance, and in these tests, their numbers proved interesting in the
following ways:

Memory utilization (the reverse interpretation of Available KBytes) l
increased as the number of data drives increased. Most likely memory
utilization improved going to a four-drive configuration due to better disk
I/O and less memory buffering.

HTTP active thread count (reported through l

Domino.Config.ActiveThreads.Max, and not the same as threadpools
for Notes NRPC clients) increased along with the number of simulated
users in order to support the additional workload. This is not a problem,
however, as there is still plenty of headroom left on the system for
additional memory usage.

R4.x Domino statistics included entries for Max, Allocated, and l

Currently Used values for HTTP Threads. Domino R5.x-supported
statistics now include Max and Allocated. If needed, the Max value will
reach the allocated amount, and the value does not decrease. The logic
is coded to use the Max amount whenever possible, so there is no longer
a need to analyze the Currently Used relationship to Max, as they are
now seen as equal.

Average disk queue length for I: drive over the different evaluation l
configurations indicates that the disk was heavily utilized (in fact, the
average queue length increased), even when going from a single drive to
a two-drive configuration. More headroom, however, was achieved going
to the four-drive configuration. This seems to be the only metric that
improved appreciably by going to a four-drive configuration; however,
administrators need to understand their own server performance issues
and assess any gains to be made by increasing the drive configurations
on an individual basis.

© Copyright 2000 Iris Associates, Inc. 4

Putting the right spin on Domino server performance (Part 2) "Iris Today" webzine at http://www.notes.net

HTTP server activity increases going from the 1,500 user workload to l

the 2,000 user workload; it is measured by the amount of mail delivered
and the total requests processed by the HTTP server. This reflects how
the Domino server was able to process the additional workload as the
disk I/O bottleneck was minimized. If you divide the HTTP request rate
(total processed) by the number of users, you can see that the average
rate did decrease as the number of users increased from 1,500 to 2,000.
This could be an indicator that the number of threads allocated for HTTP
processing are all fully utilized and that the additional requests that came
in are queued for processing. These HTTP requests include a request to
send mail, and you can see how the average Mail.delivered rate
increased. Using the distributed disk drive strategy resulted in the
removal of a bottleneck and enabled the Domino server tasks to operate
more efficiently.

Context switching reflects the rate of switches from one thread to l
another, which can occur for several reasons. When increasing the
number of users on the system, it is important to be sure that the context
switching rate doesn't approach a danger zone, indicating that the
system is spending a lot of time switching among tasks as opposed to
executing on behalf of the tasks. This can be confirmed by comparing
system time with user time (see the graphs below). The values from the
testing, as listed in the previous tables, do not show appreciable growth
in the context switching rate.

The data shown in the graphs was taken from the 2,000 user, two-drive
analysis data. The first graph shows the context switching rate on its
own; you can see the range of values and number of spikes. The second
graph allows you to compare the context switching rate in relation to the
processor behaviors. Additionally, processor work effort is broken down
in the second graph by total privileged, processor, and user times.

© Copyright 2000 Iris Associates, Inc. 5

Putting the right spin on Domino server performance (Part 2) "Iris Today" webzine at http://www.notes.net

E-mail throughput was acceptable. As described later in this article, the l

Mail.Waiting statistic is a good indicator of whether the router task is
keeping up with requests. The average value listed for the Mail.Waiting
statistic is in a very reasonable range—an average of approximately 1 for
all the different configurations—indicating that mail routing is able to
deliver the mail as soon as it is received. It is doing a good job of keeping
up with the demand; in this case, mail was being generated at
approximately 400 mail items per minute.

As you can see from the test results, any additional effort involved in
distributing databases is worth it. Not only does it facilitate better drive usage,
but it successfully supports as much as 33 percent additional users, making it
very worthy of administration and TCO consideration.

Configuring disk storage on the AS/400
By default, the AS/400 spreads data equally among its disk units, which is
one of its advantages. This improves system performance by balancing disk
utilization across all of the disk arms. You can override this by setting up
Auxiliary Storage Pools (ASP). (For details on creating ASPs, see OS/400
Hierarchical Storage Management V4R4, QB3A0Z01.)

By default, Domino servers run within the AS/400's base storage pool,a
shared system pool in which many operating system functions and some
system jobs are run. The base storage pool contains all of the main storage
not allocated to all the other pools in the system. Generally, performance will
be best using this default, because the AS/400 can allocate resources where
they are needed. There may be some cases, however, where you may want
to put one or more servers into their own storage pools. For instance, you
may want to place a Domino server in its own storage pool to allow you to
specify specific priorities, memory, and so on. If you isolate servers into
separate pools, the system can still move resources as needed using the
automatic performance tuning feature, but you have more control of what can
be moved. (For more information about creating storage pools, see Work
Management for Version 4 Release 4, SC41-5306.)

Note: Although not explored here, the MAILn.BOX file is under heavy
contention during the mail delivery process. It is worth investigating the
benefits of moving the MAILn.BOX onto its own disk drive to avoid disk

© Copyright 2000 Iris Associates, Inc. 6

Putting the right spin on Domino server performance (Part 2) "Iris Today" webzine at http://www.notes.net

contention situations. (See Part 1 of this series of articles for information
about assessing this metric using Domino console commands sh dbs and sh
stats.)

Database cache setting: if the Domino system vendors
are taking advantage, shouldn't you?
One area in which appreciable performance benefits can be gained is in the
adjustment of the NOTES.INI parameter NSF_DbCache_MaxEntries, which
allows users to set the number of databases that a server can hold in its
database cache at one time. It is tied to the metric
Database.DbCache.MaxEntries, which shows the maximum number of
entries that the cache can hold.

Note: This parameter, as well as the general concept of the Domino server
database cache, is described in the Domino 5 Administration Help
documentation. However, note that some of the information listed here
supersedes what is written in the documentation, reflecting additional
knowledge that was gained after the manual was published.

The database cache is a defined area of memory that holds key information
about a recently opened database file. When the database information is
stored in memory, the response time for the end user improves when the
database is referenced. This is because key information is retrieved from
memory quickly, as compared with the slower medium of disk I/O. As this
number increases, more memory is used and more entries are stored in the
cache (and there is a greater chance of finding a match in memory).

There's always a trade-off between the total amount of available memory and
the amount of memory reserved for a cache. If too much memory is allocated,
this may rob other server tasks of critical memory. Hence, the ability to adjust
the database cache size allocation correctly and efficiently hovers somewhere
between an art and a science. Too many entries reserved in the database
cache will cripple the server, as the amount of total available memory is
decreased and not available for other types of processing.

The minimum number of entries allowed in the cache at one time is 25. That
is actually not a practical number for most larger scale configurations. Most of
the time, the value will be calculated using NSF_Buffer_Pool_Size value
divided by 300 K and that is the value that is used. If the result is less than 25,
the number will appear as 25 (1 percent case). The Domino logic will use the
greater value. Depending on the server platform, the maximum amount
possible is 10,000. AS/400, RS/6000/AIX, Windows NT, Windows 2000, and
Solaris/SPARC all support a maximum of 10,000 entries. If
NSF_DbCache_MaxEntries is not defined, it assumes a default value based
on the available memory on your system. The NSF_Buffer_Pool_Size is
extracted (check out the value
Database.Database.BufferPool.Maximum.Megabytes found on your
Domino server console interface) and used to calculate the default. For this
reason, setting values for NSF_Buffer_Pool_Size is discouraged, as you need
to make sure that maximum and minimum values are not violated. If you do
set it, make sure that it is set properly for your environment. In addition,
setting the buffer pool size might have a ripple effect on the values set for
other parameters.

The following are some examples from our analysts' systems:

System Blade, which has 4 GB RAM, had the following values set in a l
single partition configuration:

Database.Database.BufferPool.Maximum.Megabytes = 747
Database.Database.BufferPool.MM.Reads = 0
Database.Database.BufferPool.MM.Writes = 0

© Copyright 2000 Iris Associates, Inc. 7

Putting the right spin on Domino server performance (Part 2) "Iris Today" webzine at http://www.notes.net

Database.Database.BufferPool.Peak.Megabytes = 7
Database.Database.BufferPool.PerCentReadsInBuffer = 97.12
Database.DbCache.CurrentEntries = 0
Database.DbCache.HighWaterMark = 0
Database.DbCache.Hits = 0
Database.DbCache.InitialDbOpens = 33
Database.DbCache.Lookups = 0
Database.DbCache.MaxEntries = 2241
Database.DbCache.OvercrowdingRejections = 0

The values were set by default on Hades2K, which has 512 MB RAM, l
which had the following values set for a single partition configuration:

Database.Database.BufferPool.Maximum.Megabytes = 171
.
.
.
Database.DbCache.MaxEntries = 513

In general, you can achieve improved database cache performance by
overriding the Database.DbCache.MaxEntries value and adjusting it instead
to the number of files accessed by your user population. For mail server
configurations, you can achieve performance gains by setting the value
Database.DbCache.MaxEntries to be approximately equal to the number of
active users. (This doesn't hold true for an application server, where typically
many users are accessing a very small number of files.) As some additional
files are generally used, the Server Performance Team usually sets the value
for Database.DbCache.MaxEntries to be about 50 over the active user
count.

For example, if you have 2,700 mail users, each with their own mail file, a
value of 3,000 is fine; however, if you have 2,700 application users who all
open and use the same application database, the default value is valid. (A
word of caution: recommendations made here may result in increased
memory requirements. Hence, you should not implement them unless your
system has sufficient unused memory.)

You should also monitor the Database.DbCache.CurrentEntries metric in
your production environment, as this tells you how much of the database
cache is actually being used. If you see that the value
Database.DbCache.CurrentEntries equals Database.DbCache.MaxEntries
, and you have enough extra memory available, the NOTES.INI value should
be used.

Note: Do not use Mem.Free and Mem.Available to see if there is extra
memory. See Part 1 of this series of articles for more information about these
metrics.

You can also use Mail.DBCacheEntries to determine cache usage. Note that
the router database cache size defaults to (NSF_BUFFER_POOL_SIZE_ MB
* 3). You can monitor Mail.DBCacheEntries to see if your system is using the
maximum, and compare Mail.DBCacheHits with Mail.DBCacheReads to see
how effectively your cache is being used.

If your server usage profile indicates that your system is more of an
application server, where there are many users accessing a smaller number
of files, this type of change probably won't yield many benefits. In this case,
the databases accessed are already available through the database cache
and do not get swapped out. Increasing the database cache size will not
improve the access time to your database information.

If you are considering how this setting will work to your advantage (and we

© Copyright 2000 Iris Associates, Inc. 8

Putting the right spin on Domino server performance (Part 2) "Iris Today" webzine at http://www.notes.net

hope that you are), you should also review the reports posted by vendors to
the NotesBench Consortium Web site, and see how the vendors are making
use of this NOTES.INI setting. They will take advantage of every possible
setting and adjustment that will maximize response time for their users.

In summary, we do not recommend setting a value for DbCache, as every
configuration and Domino server are different. The database cache is
memory-dependent and by default, is three times the size of the
NSF_Buffer_Pool, if not already set in NOTES.INI. The first thing an
administrator should check is the number of data files on the server as well as
the amount of server memory. For instance, if there are 2,500 mail files, you
could set the NSF_DbCache_MaxEntries to 2,550 (the additional 50 are for
system files such as log.nsf, names.nsf, and so on). In reality, there could be
fewer such files.

For more information about how the Database Cache operates, see Lotus
Customer Support Technote #176417 How Does the DbCache Work?

Can Domino failover be supported in your clustered
environment?
Suppose you want to take advantage of Domino's failover capability and have
successfully enabled the appropriate settings. This doesn't necessarily mean
that your current systems and Domino usage pattern can support it. You need
to work with the Server.Availability statistic, which is used to determine when
failover should occur. You also need to have a system with sufficient capacity
to support failover in the cluster. Designing for a cluster configuration is a
challenge, and even after all the planning and analysis has been done, you
need to keep monitoring the configuration to make sure that it is performing
as expected. A good starting point is to keep track of the Server.Availability
values for all the systems defined for failover.

Note: If all the systems in a cluster are heavily utilized (a situation to avoid in
any case), it's not going to help to have a failover strategy implemented.

There are some system controls that you can use to fine-tune your
implementation. Again, if the original system has not been sized correctly, the
fining-tuning will not correct the larger issues. There are the two NOTES.INI
variables, Server_Availability_Threshold and Server_Transinfo_Normalize,
that are used to ensure that cluster failover is graceful. Graceful failover
means that the Domino server can anticipate the cutoff point for rejecting new
user connections, before the server maxes out. Such prudent planning
ensures that the currently attached users are guaranteed good response
times, and the new users trying to attach will also have quality response
times.

The first NOTES.INI parameter, Server_Availability_Threshold is set and
works directly with the Domino statistic Server.Availability. When
Server.Availability reaches the threshold set in the
Server_Availability_Threshold parameter, the server begins rejecting user
requests. The threshold may need to be set high (95-97) for the best failover
characteristics.

In addition, Server_Transinfo_Normalize will probably need to be set. This
allows you to "normalize" the response times experienced by your Domino
server and insures that the failover processing will occur only when it's
supposed to. This value can be tailored for your environment.

The key message here is that using server performance parameters and
statistics not only helps you with up-front planning, but also helps with
ongoing monitoring and fine-tuning of your system after implementation. Any
configuration changes (such as user workload change, user count change,
hardware configuration change, and so on) means that you will need to check

© Copyright 2000 Iris Associates, Inc. 9

Putting the right spin on Domino server performance (Part 2) "Iris Today" webzine at http://www.notes.net

the values. Such due diligence means improved server performance and
better reliability for your users.

For more information on clustering, see the Iris Today articles Optimizing
server performance: Domino clusters Part 1 and Part 2. For more
information on load-balancing strategies, see the Iris Today article Workload
balancing with Domino clusters.

The importance of sound application development
practices
In the past year, a good deal of information about development techniques
that can be used to optimize your Notes/Domino applications has been made
available to the user community. The tactics described have appeared in:

The View magazine.l
The Lotus White Paper Maximizing Application and Server Performance l

in Domino (Available in the Technical Library on the Lotus IT Central
Performance Zone).
Presentations made by the Performance Team and the Web Server l
Team at Lotusphere, DevCon, and other large conferences, which you
can find in the Iris Sandbox.
The IBM Redbook on Performance Considerations for Domino l

Applications (SG24-5602-00).

As an example of the kind of information disseminated through these
vehicles, The View magazine published an article that featured a comparison
of GetNthDocument code and GetNextDocument code. This information has
since been referenced numerous times and has made an impact on the
Domino developer community. Both practical usage and test analysis indicate
that the GetNextDocument code should be used, especially when working
with a large number of documents.

This is only one example of an efficient application development practice that
has an impact on server performance. Countless others exist. If you are a
developer, it behooves you to think about how your development practices
affect the servers on which you work. This requires developing some insight
into what could be going on "behind the scenes" in your code, such as the
implications of what is included in a loop or the type of operation that implies
a disk access.

Better coding practices will be also benefit your applications. Application
performance isn't solely dependent on LotusScript, the Domino back-end
classes, or any of the other components that are invoked as part of your
application. Improper coding practices can often be the culprit, and the time
spent on analyzing the application to that end is time well spent. Sound
application development practices can help server performance by not
allowing the applications to be the source of any bottlenecks on the server.

If the server is performing well, there's no a guarantee that the applications
will do so; however, this does not necessarily point to the server as the culprit.
Analyzing the application might be a better and quicker approach to achieving
better performance.

If an application is performing poorly, and you think that it needs some
performance tuning, here are some things to look for. If views are slow to
open or scroll, check for:

The volume of data. Perhaps it's time to archive.l
Time/date-sensitive view formulas. Devise alternate strategies.l
ReaderNames or AuthorNames fields on the documents displayed in l
these views, as these force extra analysis on a per document basis.

If documents are slow to create, save, or open, or even in Read mode, check
for:

© Copyright 2000 Iris Associates, Inc. 10

Putting the right spin on Domino server performance (Part 2) "Iris Today" webzine at http://www.notes.net

An abundance of @Db formulas, especially in keyword fields.l
(Web)QueryOpen or (Web)QuerySave agents.l
Scheduled agents, especially if they execute against newly created or l
modified documents, or are otherwise scheduled to execute hourly or
more frequently. Such agents should have a very fast execution time,
and you can pretty easily log enough information to see if this is the
case. A good rule of thumb is that no scheduled agent should take longer
than a few seconds, unless there are extenuating circumstances.
Poor logic or coding, or using an inappropriate method to get a collection l
of documents, which can also lead to poor execution times.

An article in The View magazine, "Performance Testing LotusScript Code
Using Object-Oriented Design Techniques" by Burke LaShell, describes a
technique that developers can use to isolate parts of their applications that
might have performance problems, and provides a utility that shows you
exactly where your bottlenecks are. You can download the utility from the
article abstract page.

Client-level decisions do have an impact upon server
performance
As mentioned in Part 1 of this series, client-level activities can have a big
impact on server-level performance. In doing the research for this series, the
Server Performance Team came across several client issues that Domino
server administrators can address in their own installations to help increase
their server performance.

One such issue is that of image resource storage. Designers should take
advantage of image resource storage within the database, which was
introduced in R5. Although there are other methods for using images in a
database, the use of image resources is the most efficient as it requires that
you maintain images in only one location, and refer to that location wherever
you want the image to be used. If there are any changes to the image,
changing and refreshing the source file distributes the changes to wherever
the image is referenced. Based on the experiences of the Lotus Professional
Services Technology Team, designers and developers could take better
advantage of this feature from both a performance and administration
viewpoint.

Understand more about the mail delivery rate
There is a long list of Domino server statistics, and their meaning is often
unclear. There are some hidden jewels of information there though, that can
help you better understand the Domino server. With this knowledge in hand,
you can better appreciate the information that's been generated about certain
functional areas and take proactive steps as necessary. This section deals
specifically with NRPC Mail Delivery. (Note that the router operates for all
types of mail delivery, such as IMAP and WebMail, and this information can
be leveraged for alternate mail protocols.)

From a performance viewpoint, the statistics described below are the ones to
concentrate on for Mail Delivery analysis. Note that the scope of the analysis
is restricted to those stats found in the Mail section. For the big picture of mail
processing, the Platform and Database stats should also be included in the
analysis.

Note: It may take a few minutes for some of the Domino stats listed below to
appear at initial server startup, as Mail Routing gets going. Also, if there is no
activity for a given feature area, the associated Domino stat will probably not
appear in the stat list. For example, if there is no SMTP delivery performed,
the SMTP stats will not appear in the Domino stat list.

Mail.Waiting
This is the count of mail items waiting to be delivered. Specifically, it is the

© Copyright 2000 Iris Associates, Inc. 11

Putting the right spin on Domino server performance (Part 2) "Iris Today" webzine at http://www.notes.net

count of mail items that have been seen by the router and then dispatched to
a transfer or delivery destination. This value is cumulative for all MAIL.BOX
files.

This metric has proven to be the most beneficial in tuning analysis efforts in
the benchmarking environment. In performance analysis, an increase in this
value is an indication that the Mail Router might not be keeping up with the
incoming requests for delivery. However, this is not necessarily true in the
customer production environment, as the sizes of the mail items are very
different and the time of day (which includes peak periods) may factor into the
analysis of how the mail router is performing. More importantly, if the
destination or next server hop is not available, the mail item is queued on the
local server to wait—a situation that is not typically tested for in a performance
analysis environment.

Mail.WaitingForDNS is an indicator as to whether DNS is performing well.
The Domino router logic looks up the target domain in DNS to acquire the
host names to use for the SMTP connection. If DNS is down or performing
poorly, this value grows. This is an indication of a bottleneck in your network
configuration, and further troubleshooting should be performed at this point.

Mail.WaitingRecipients is the count of the total number of recipients for each
mail item held on the Mail.Waiting queue. Note that mail may have been
delivered to some of those recipients. For example, if a message came in with
ten recipients, and nine were delivered, but one was to be delivered to
someone on a downed server, the Mail.WaitingRecipient count would still be
ten.

Mail.TotalPending
This value (new for Domino Release 5.0.4) reflects the number of mail
messages currently resident in all active MAIL.BOX files. If multiple MAIL.BOX
files are enabled on the server, this value includes all messages in all of the
currently enabled mailn.box databases. This count includes all Dead
(non-deliverable) and Held mail, as well as mail that is pending delivery.

Mail.TotalPending is updated on a 5-minute interval (to minimize impacts on
the server's performance), regardless of other processes that are updated
instantaneously. The server process maintains and monitors this statistic.
Since the stat is maintained by the server process and not the router, the
Mail.TotalPending value will still grow whether or not the router is running.
Practically, Mail.TotalPending keeps track of the total number of messages
in all MAIL.BOX files. As messages are processed by the router and removed
from MAILn.box, the statistic is decremented.

Mail.Delivered
The Mail.Delivered statistic is a count of the number of recipients whose
inbox was updated on the local server. For example, a message with three
recipients all being delivered on the local server would count, for this statistic,
as three.

Mail.TotalRouted
This indicates the number of recipients for whom messages were transferred
or delivered. A message with three recipients physically transferred once to a
destination would count as three.

This metric is also broken down by protocol:

Mail.TotalRouted = Mail.TotalRouted.NRPC + Mail.TotalRouted.SMTP

Mail.Deliveries
This is an indication of how many trips to the mail file were taken for a given
user. It's equivalent to number of times a user's mail file was opened and

© Copyright 2000 Iris Associates, Inc. 12

Putting the right spin on Domino server performance (Part 2) "Iris Today" webzine at http://www.notes.net

closed. It will always be less than, or equal to, Mail.Delivered. For example, if
there are two messages pending for a user, and the router opens the mail file
once, delivers both messages, and then closes the mail file, that counts as
two delivered and one delivery.

Mail.Transferred
This is the total number of messages transferred from the Domino server to a
given destination (or the next hop). A single message with three recipients, all
going to the same destination, would count as one message transferred. If
that same message had two recipients going to one destination and one
going to another, it would be counted as two messages transferred.

This metric is also broken down by protocol:

Mail.Transferred = Mail.Transferred.NRPC + Mail.Transferred.SMTP

The metric Mail.Transferred.TotalKBT is also calculated at this time, which
keeps track of the total KB transferred to another destination.

Mail.Hold
This is a stat reflecting an administrator-requested action. It's a count of the
messages with RoutingState held. For configurations where the administrator
has selected "hold undeliverable mail," this should be the count of the
messages in that state.

Other mail statistics
Other Domino stats that are useful to track from an administration viewpoint
(and whose names are more self explanatory) include
Mail.AverageDeliverTime, Mail.MaximumDeliverTime, and
Mail.MaximumSizeDelivered.

Examples
Here are some examples to analyze:

Mail.Waiting Mail.WaitingFor
DNS

Mail.Waiting
Recipients

01/28/00 12:54:31
PM

3 0 9

01/28/00 12:55:31
PM

0 0 0

01/28/00 12:56:31
PM

4 0 12

01/28/00 12:57:31
PM

3 0 5

01/28/00 12:58:31
PM

2 0 6

01/28/00 12:59:31
PM

2 0 6

01/28/00 01:00:31
PM

1 0 1

Mail.
Hold

Mail.
Delivered

Mail.
Deliveries

Mail.Total
Routed

01/28/00 12:54:31
PM

0 21972 21956 21972

01/28/00 12:55:31
PM

0 22248 22222 22248

© Copyright 2000 Iris Associates, Inc. 13

Putting the right spin on Domino server performance (Part 2) "Iris Today" webzine at http://www.notes.net

01/28/00 12:56:31
PM

0 22511 22486 22511

01/28/00 12:57:31
PM

0 22750 22725 22750

01/28/00 12:58:31
PM

0 23025 23003 23025

01/28/00 12:59:31
PM

0 23252 23231 23252

01/28/00 01:00:31
PM

0 23503 23477 23503

See the Lotus Customer Support Technote #145928 How to Interpret Notes
R4 Mail Routing Statistics for more information about some of the mail stats
discussed above.

When planning for that next server
The suggestion to plan ahead for the next server isn't so much a tip or a
clearing up of a misconception as it is a plug for our Performance Product
Managers, who are out there gathering information about various platforms.
We have already shared much of this information and will continue to include
it in our presentations and Notes.net articles and postings. If you are planning
to invest in a new or additional server, you should check out the sources and
links listed below. This list is an excellent summary of cross-platform tools and
information; it was developed in response to Lotusphere feedback about the
difficulty of finding this kind of information.

Note: The list does not include links to individual vendors; see the
NotesBench Consortium Web site for links to specific vendor sites.

Platform Capacity Planning Tools and White
Papers

IBM Netfinity NT IBM Netfinity sizing tooll

Compaq NT Compaq ProLiant Sizer for Dominol

Dell NT See your Dell representativel

Sun Solaris/UNIX Internal tool - See your Sun l
representative
Lotus Domino R5 for Sun Solaris, IBM l
Redbook (SG24-5969-00)

RS6000/AIX Internal tool - See your IBM AIX l
representative
RS/6000 resources l

Resource Tuning of Lotus Domino on l

AIX: Quick Reference Guide

AS400 Lotus Domino for the AS400 l

Performance page includes links to
sizing information, including the
Workload Estimator for the AS400
White papers: Evaluating Appropriate l

workloads for the AS400e Dedicated
Server for Domino, AS/400
Performance Tuning for Domino,
Domino for AS/400 Performance
Tuning

S/390 Internal tool - See your S390 l
representative

© Copyright 2000 Iris Associates, Inc. 14

Putting the right spin on Domino server performance (Part 2) "Iris Today" webzine at http://www.notes.net

Domino for S390 Performance l

Overview page
Lotus Domino for S/390 Performance l

Tuning and Capacity Planning, IBM
Redbook (SG24-5149-01)

Conclusion
Domino administrators have an ongoing challenge when it comes to
optimizing the performance of their servers. Not only do they need to
understand the information that their servers provide, but they also need to
apply that information properly for their particular configurations.
Administrators also have the opportunity to be proactive when it comes to
performance; to take all this information and use it to fine-tune their servers to
achieve even greater performance. On a higher level, administrators can also
takes steps to ensure that application development practices in their
organizations enhance server performance rather than hinder it.

For additional information on server performance, see the NotesBench
Consortium and the Lotus IT Central Performance Zone.

If you have benefitted from any of the tips or information presented in this
series, the Domino Server Performance Team would like to hear from you.
Use the article feedback form to send us your success stories.

ACKNOWLEDGEMENTS
Special thanks to the various individuals and teams that have contributed their insights
and datapoints to make this article more successful. In particular, the Domino Server
Performance Team, James Grigsby, Maria Krylova, Lotus Professional Services
Technology Team, Lotus Support, and the Mail Routing Team have all made valuable
contributions to the points and the content in these articles. We would also like to
acknowledge Louis Bradbard and Richard Kanosky, of the Server Performance Team,
for the data generation and analysis they provided for this article.

ABOUT THE AUTHORS
Carol Zimmet started working at Iris in 1994. She is the co-lead on the Domino
Performance Team, and responsible for evaluating performance and performance tool
development. Carol continues to search for the one-step solution to everyone's
performance problems. She is also interested in a "white box" approach towards
improving the quality of the product. Carol enjoys bicycling with her kids and playing
racquetball. She has a longing to return to stained glass!

Amy E. Smith is a principal user assistance writer for Lotus. She writes and maintains
functional specs for Domino and Notes. She also is a member of the Notes UA Web
team.

© Copyright 2000 Iris Associates, Inc. 15

