

by
Anthony
Patton

Level: Advanced
Works with: Domino 5.0
Updated: 02/01/2001

Domino R5 support for Java servlets increases the choices you have when
developing applications. You can use servlets instead of Domino agents to
access Domino objects and accomplish server-side processing, for
example.

This article provides basic information about servlets, including the
differences between agents and servlets, setting up your server to work with
servlets, and basic servlet structure. It then explores three servlet examples
in detail.

This article assumes familiarity with JavaScript and an understanding of
designing Domino applications.

Some servlet basics
A servlet is a Java program that runs on a server and offers functionality
similar to CGI (Common Gateway Interface) applications and Domino
agents. The main advantage of a servlet is that it is loaded into memory
once, as opposed to Domino agents and CGI programs that are loaded for
each call. All calls to a servlet, after its initial load, use the same instance.

While Domino agents and servlets offer similar functionality, they are very
different in terms of implementation. An agent resides in a Domino database
while servlets reside on the file system. This brings two issues immediately
to mind: distribution and security.

A Domino agent can take advantage of all aspects of its database container.
Therefore, replication can be used for distribution to other Domino servers.
Likewise, the Domino security model determines agent access.

Conversely, servlets live on the file system so server, file, and directory
security controls access. By default servlets run with the security rights of
the server, but they can run using a specific person's Internet name and
password. Finally, unless you work with directory replication on Windows NT
you must copy or install a servlet's files on all other systems desired.

About the JSDK
The standard Domino Designer development environment does not support
the development of servlets, so you must use a third-party IDE or the SUN
command-line JDK to develop servlet code. (See the Iris Today article
Creating servlets for Domino with VisualAge for Java for a discussion of
servlet development with IBM's VisualAge for Java.)

The classes required to develop a servlet are freely available from Sun
Microsystems in the Java Servlet Development Kit (JSDK). In addition, the
JSDK is a standard part of a Domino install. The jsdk.jar file is located in
your root Domino installation directory. For example, my Domino server is
installed in the directory r5server on my D drive, so the path to my copy of
the file is:

D:\r5server\jsdk.jar

© Copyright 2001 Iris Associates, Inc. 1

Notes.net: Domino development with servlets "Iris Today" webzine at http://www.notes.net

Note: Jar files are the compression standard used for Java files. They are
similar to WinZip, PKZip, or Windows CAB files .

Server setup
Domino R5 comes with its own servlet manager, but you can also use a
third-party servlet engine such as IBM WebSphere (currently, WebSphere is
the only supported engine). The Server document in the Domino Directory
contains a section for servlet settings. These settings are located in the Java
Servlets section of the Domino Web Engine tab on the Internet Protocols
tab. Here are the servlet settings on my test server, for example:

Let's take a closer look at the options available:

Option Description
Java servlet support This enables/disables servlet support. The

possible values are None, Domino Servlet
Manager, and Third-Party Servlet Support.

Servlet URL path This is used to indicate the URL string that
can be used to access servlets. This is the
directory in which servlet related files must
be located to properly run.

Class path This is the location of any servlets to load
and run. This is a local directory. The
Domino Servlet Manager locates any
servlets that are listed in the classpath
directory.

Servlet file extensions This is a list of URL file extensions that tell
Domino that it is a servlet. A comma
separates multiple extensions.

Session state tracking This setting signals (enabled or disabled)
whether the servlet manager should
terminate idle sessions that are initiated
by Java calls from servlets. The idle
session time limit is set in the next field.

Idle session timeout This specifies the amount of time (in
minutes) a connection can be idle before it
is terminated. This is used only if Session
state tracking is enabled. The default is
30.

Maximum active sessions This is the number of active servlet
sessions allowed on the server at any one

© Copyright 2001 Iris Associates, Inc. 2

Notes.net: Domino development with servlets "Iris Today" webzine at http://www.notes.net

time. The default is 1000.
Session persistence This signals (enabled or disabled) whether

or not session information is saved to
disk.

Domino servlet support includes two pieces: the JVM (Java Virtual Machine)
and the Servlet Manager. When servlets are enabled, the JVM loads
moments before the HTTP server starts. Consequently, if the Domino
Servlet Manager is used, it is loaded after the JVM is loaded. If you are
using a third-party servlet manager, only the JVM is loaded.

The servlet properties file
The Domino servlet engine includes support for a configuration file that
specifies standard parameters when it is loaded. It is a text file named
servlets.properties, and it is located in the data directory of your Domino
installation, for example:

D:\r5server\data\servlets.properties

If you can't find the file, you can easily create it with any text editor, such as
Windows Notepad.

The servlet properties file lets you specify an alias, initialization arguments,
URL extension mapping, and the loading of servlets upon Web server
startup. You can insert comments as well.

Servlet aliases
The alias directive has this syntax:

servlet.<alias-name>.code=<class-name>

Initialization arguments
You can specify initial data for a servlet in the properties file. The servlet can
access the data by using the method ServletConfig.getInitParameter. The
initialization directive has this syntax:

servlet.<alias or class name>.initArgs=<name1=value1>,<name2=value2>

URL extension mapping
The URL extension-mapping directive has this syntax:

servlet.<alias or class name>.extension=<extension> <extension> ...

Load on startup
The startup directive has this syntax:

servlets.startup=<alias or class> <alias or class> ...

Here is the content of a servlets.properties file that assigns a name (test) to
a servlet named HelloWorld.class (notice the class extension is optional).
Initial arguments are assigned to it, and it is loaded upon startup.

Example servlets.properties file
servlet.Test.code = HelloWorld
servlet.Test.initArgs = 1, 2, 3
servlets.startup = Test

The great aspect of loading a servlet on Web server startup is that it is
available in memory from that point forward. Keep in mind, however, that if
any changes are made to a servlet's code, the Domino HTTP server must
be shut down and restarted for the changes to be recognized. The restart

© Copyright 2001 Iris Associates, Inc. 3

Notes.net: Domino development with servlets "Iris Today" webzine at http://www.notes.net

command can be used:

Tell HTTP restart

Common mistakes
Here is a brief list of common mistakes encountered when working with a
servlet configuration file:

Placing the file in the wrong directory; it must be located in your �

Domino data directory.
Using the wrong file extension; many editors like Notepad will append �

the .TXT file extension.
Using an incorrect file name; the file name must be �

servlets.properties.
Ignoring case-sensitivity; the file name is case-sensitive, as are servlet �

names and assignment statements.

The Domino configuration file
Once servlets are enabled on a Domino server, several servlet-related lines
will appear in the Domino configuration file (domino.cnf) located in the data
directory. Here are those lines:

Java Servlet Settings

ServerInit servlet:ServletInit d:\r5server\Data
Service /servlet/* servlet:ServletService*
ServerTerm servlet:ServletTerm

The servlet life cycle
As previously stated, a servlet is loaded into memory once and only once.
When it is loaded, the init method is executed. The service method is
executed every time a client requests a servlet, and the doPost or doGet
method is called depending on the client request.

Servlets can be loaded via two methods: the Servlet Manager loads at HTTP
startup as specified in the servlets.properties file or at the initial request from
a client. A servlet is disposed (cleared from memory) when the HTTP task is
shut down.

You should use the Servlet Manager as much as possible via the
servlets.properties file. This places the load on the server at HTTP startup,
and client requests encounter no delay. The response time will be
somewhat the same the first and last time a servlet is requested.

Servlet structure
HTTP requests can be of two types: get and post. The get method appends
information to the end of the URL. It is available in the query_string
environment variable. Post sends information in the form of name/value
pairs.

When developing servlet code, there are two packages from the JSDK that
are used to work with post or get methods, javax.servlet and
javax.servlet.http. These packages are imported for use in your Java servlet.

There are three methods of a servlet that are important to understand:
service�

This is called each time a server requests a servlet. Usually, this
method is not used for HTTP servlets; it is more applicable to generic
servlets.
doPost�

All post requests issued from a Web server to the servlet invoke this
method. Its format is:

© Copyright 2001 Iris Associates, Inc. 4

Notes.net: Domino development with servlets "Iris Today" webzine at http://www.notes.net

public void doPost(HttpServletRequest req, HttpServletResponse res)
doGet�

All get requests issued from a Web server to the servlet invoke this
method. Its format is:
public void doGet(HttpServletRequest req, HttpServletResponse res)

The two methods to become most acquainted with are doPost and doGet.
Each method accepts two object parameters, HttpServletRequest and
HttpServletResponse.

HttpServletRequest
The HttpServletRequest object contains all information from the requesting
client. This object can be used to access request headers, CGI variables,
cookies, and form data, and to conduct session tracking. Actually, it parses
incoming form data and stores it in servlet parameters.

Here is a partial list of HttpServletRequest class methods:

Method Description
getContentLength Returns the length of content in bytes.
getContentType Returns the MIME type for content.
getCookies Returns an array of cookie objects.
getMethod Returns the HTTP method utilized.
getParameter(String name) Returns the value of a specified

parameter. The servlet engine places all
HTML form values into parameters. Use
this method for single-value pairs.

getParameterValue(String
name)

Returns all values for a specified
parameter. Use this when a parameter
has more than one possible value.

getQueryString Returns the query string from the
requestor URL.

getRemoteUser Returns the name (if any) of the requestor.

HttpServletResponse
The HttpServletResponse object contains all communication to a client or
requester from the servlet. Here is a partial list of methods:

Method Description
getWriter Returns a PrintWriter object for the

purpose of sending response data to the
requestor.

sendRedirect(String url) Redirects the response to a specified
location.

setContentType(String type) Sets the type of content that is sent to the
requester.

setStatus(int code) Sets the HTTP status code.

Creating and running a servlet
Now let's take a look at a simple servlet. The first four lines import
necessary information. The first imports Java classes for sending output to
the requesting client, and the second imports the necessary Java classes
for handling input/output errors. The third and fourth lines import Java
Servlet classes.

© Copyright 2001 Iris Associates, Inc. 5

Notes.net: Domino development with servlets "Iris Today" webzine at http://www.notes.net

import java.io.PrintWriter;
import java.io.IOException;
import javax.servlet.*;
import javax.servlet.http.*;

Next is the servlet class declaration, followed by the doGet method.

public class Example_1 extends HttpServlet
{

public void doGet(HttpServletRequest req,HttpServletResponse res)
throws ServletException,IOException

{

We are working with browser clients, so next we set the content-type of the
output to HTML. Then we initiate the PrintWriter object, which will be used to
send the content to the browser.

res.setContentType(“text/html”);
PrintWriter toBrowser = res.getWriter();

The next section sends the HTML to the browser.

toBrowser.println(“<HTML”);
toBrowser.println(“<HEAD>");
toBrowser.println("<TITLE>Example Servlet</TITLE>");
toBrowser.println("</HEAD>”);
toBrowser.println(“<BODY>”);
toBrowser.println(“<H1>Servlet Example</H1>”);
toBrowser.println(“
<HR>
”);
toBrowser.print(“<H2>This was generated by the servlet”);
toBrowser.println(“doGet method on a Domino server.</H2>”);
toBrowser.println(“</BODY></HTML>”);

}

Finally, the doPost method completes the process.

public void doPost(HttpServletRequest req, HttpServletResponse
res)

throws ServletException, IOException
{

res.setContentType(“text/html”);
PrintWriter toBrowser = res.getWriter();
toBrowser.println(“<HTML”);
toBrowser.println(“<HEAD>");
toBrowser.print(“<TITLE>Example - Servlet</TITLE></HEAD>”);
toBrowser.println(“</HEAD>");
toBrowser.println(“<BODY>”);
toBrowser.println(“<H1>Servlet Example</H1>”);
toBrowser.println(“
<HR>
”);
toBrowser.print(“<H2>This was generated by the servlet”);
toBrowser.println(“doPost method on a Domino server.</H2>”);
toBrowser.println(“</BODY></HTML>”);

}
}

Here are the results of calling the servlet from Internet Explorer:

© Copyright 2001 Iris Associates, Inc. 6

Notes.net: Domino development with servlets "Iris Today" webzine at http://www.notes.net

And here's what happens on the Domino server when the servlet is called.
Notice that here, the Java Servlet Manager loaded when the request was
sent to the server by the client.

The "Addin: Agent printing: Example_1: init" in the last line signals the
servlet was loaded into memory on the server. Every subsequent call will
use this instance. You can test this by making repeated requests to the
servlet (you may want to shut down and restart your browser).

Changing a servlet
An important point is the procedure for making changes to a servlet. If you
make changes to your servlet code and recompile it, the Domino server
must reload the servlet. This is not done automatically, but it can be forced
by restarting the HTTP task. The following screen shows restarting the
HTTP task on my server. Notice that the servlet is destroyed; it will be
reloaded once a client requests it.

© Copyright 2001 Iris Associates, Inc. 7

Notes.net: Domino development with servlets "Iris Today" webzine at http://www.notes.net

Loading the servlet on server startup
Another situation is the loading of the servlet at server startup. You can
configure your Domino server via the servlets.properties file to load your
servlet at startup. For example, if its name is NotesNetTest, here are the
contents of the properties file:

servlet.NotesNetTest.code = Example_1
servlets.startup = NotesNetTest

The following screen shows the Domino server console on startup. Notice
the servlet loads just before the HTTP server task.

We can now call the servlet using the name NotesNetTest, as the following
screen illustrates.

Working with Domino objects
Now let's turn our attention to tighter integration of servlets and Domino. The
next example uses Domino objects in a servlet. It accesses entries in the
Domino Directory.

Initially, the code resembles the previous example, although here, the import
lotus.domino.* line imports the necessary Domino Java classes.

© Copyright 2001 Iris Associates, Inc. 8

Notes.net: Domino development with servlets "Iris Today" webzine at http://www.notes.net

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import lotus.domino.*;
public class Example_2 extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException{

res.setContentType("text/html");
PrintWriter toBrowser = res.getWriter();
toBrowser.println("<HTML");
toBrowser.println("<HEAD>");
toBrowser.println("<TITLE>Example 2</TITLE>");
toBrowser.println("</HEAD>");
toBrowser.println("<BODY>");
toBrowser.println("<H1>Example 2</H1>");

Calls to Domino objects must be contained within a try/catch block, so the
try { line is next. Within this block, we create a NotesThread object for
accessing the Domino objects. Then we create a new Session object. There
are no parameters for the Session object, so the server's access is used,
but we could have specified a user's Internet name and password instead.
Next, we access the Domino Directory (names.nsf) and the People view,
and then we retrieve the first document from the view.

try {
NotesThread.sinitThread();
Session s = NotesFactory.createSession();
Database db = s.getDatabase("","names.nsf");
View vw = db.getView("People");
Document doc = vw.getFirstDocument();
toBrowser.println(db.getTitle());
toBrowser.println("<TABLE>");
while (doc != null)
{

toBrowser.println("<TR><TD>");
toBrowser.println(doc.getItemValueString("LastName"));
toBrowser.println("</TD></TR>");
doc = vw.getNextDocument(doc);

}
toBrowser.println("</TABLE>");
vw.recycle();
db.recycle();
s.recycle();

}
catch (NotesException n) {

The toBrowser lines send the database title to the requesting client (the
browser). With the while (vw!=null) line, we begin to loop through all the
documents in the view, displaying each document's Last Name value in the
browser and then retrieving the next document in the view. After the last
document, we release (recycle) the memory used by the Domino objects to
the system.

Finally, we display any Notes errors that were encountered and terminate
the NotesThread object in the finally block.

System.out.println("Exception ID: " + n.id);
System.out.println("Exception description: " + n.text);

}
finally
{

NotesThread.stermThread(); }

© Copyright 2001 Iris Associates, Inc. 9

Notes.net: Domino development with servlets "Iris Today" webzine at http://www.notes.net

toBrowser.println("</BODY></HTML>");
}

}

The following screen shows the results of accessing this servlet on a test
server:

Combining with Domino forms
Now that we've seen how to build a servlet and incorporate Domino objects,
let's turn our attention to the combination of a servlet and Domino forms.
We'll examine the code first, followed by the setup of a form.

The following code comprises a servlet that handles values submitted from a
form. The values are retrieved from the form and used to populate a new
entry in a Domino database. The code begins with the "standard" lines.
Then we retrieve the values of the FName, LName, Email, and Phone fields
from the form.

import javax.servlet.*;
import javax.servlet.http.*;
import lotus.domino.*;
import java.io.PrintWriter;
import java.io.IOException;
public class Example_3 extends HttpServlet
{

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException

{
res.setContentType("text/html");
PrintWriter pw = res.getWriter();
pw.println("<html>");
pw.println("<head>");
pw.println("<title>Example 3</title>");
pw.println("</head>");
pw.println("<body>");
pw.println("<h1>Thank you!</h1>");
String fname = req.getParameter("FName");
String lname = req.getParameter("LName");
String email = req.getParameter("Email");
String phone = req.getParameter("Phone");

© Copyright 2001 Iris Associates, Inc. 10

Notes.net: Domino development with servlets "Iris Today" webzine at http://www.notes.net

Next, as we did in the previous servlet, we create a NotesThread object,
create a Session object for working with Domino objects, and access the
Domino Directory. In this case, we proceed only if the database was found.

try
{

NotesThread.sinitThread();
Session s = NotesFactory.createSession();
Database db = s.getDatabase("","names.nsf");
if (db != null)
{

Then we create a new document, set the form value for the new document,
and populate the fields of the new document with the values we've retrieved.

Document doc = db.createDocument();
doc.replaceItemValue("Form", "Person");
doc.replaceItemValue("FirstName", fname);
doc.replaceItemValue("LastName", lname);
doc.replaceItemValue("OfficePhoneNumber", phone);
doc.replaceItemValue("MailAddress", email);

We then save the document and release the system resources used by the
document, database, and session objects. (Before the session object is
released, an error message is specified for cases where the database was
not found.)

doc.save(true);
doc.recycle();
db.recycle();

}
else
{

pw.println("An error was encountered.");
}

s.recycle();
}

Finally, we handle the Domino-related exceptions, terminate the thread, and
display a message on the browser.

catch (NotesException n)
{

pw.println("Notes Error: " + n.id);
pw.println("Description: " + n.text);

}
catch (Exception e)
{

e.printStackTrace();
}
finally
{

NotesThread.stermThread();
}
pw.println(fname + " " + lname + " has been registered.");
pw.println("</body></html>");

}
}

The servlet code is only half the picture. Let's turn our attention to the setup
of the Domino form. The form must be directed to the servlet, so you must

© Copyright 2001 Iris Associates, Inc. 11

Notes.net: Domino development with servlets "Iris Today" webzine at http://www.notes.net

add a new HTML form tag with an action specifying the servlet. This routes
the form to the servlet upon submission. A closing form tag must be placed
before this tag; this closes the Domino-generated form tag. Here is the
design of the form:

Here is the HTML, which appears at the top of the form, that redirects the
form to the servlet:

[</form>
<form name="NotesNetExample" action="
http://baseline2000:81/servlet/Example_3">]

The brackets ([and]) designate the text as pass-thru HTML. The name
attribute of the form element assigns a name to the form. This name is used
when accessing form elements in JavaScript or the submission of the form
to the server. The action attribute signals where the action is transferred
when submitted

The following screen shows the form opened in Internet Explorer. The form
data is sent to the servlet when it is submitted.

© Copyright 2001 Iris Associates, Inc. 12

Notes.net: Domino development with servlets "Iris Today" webzine at http://www.notes.net

Conclusion
Making the choice between a servlet and an agent is not a clear-cut
decision. Language isn't a barrier since both support Java. Each has
advantages, but it is important that Domino supports both. The decision is
placed where it should be—on the developer. You may prefer servlets due
to your extensive Web development background or because you want to
use the powerful servlet manager in WebSphere. On the other hand,
experienced Domino developers may prefer the robust Domino agent
environment. The choice is yours.

ABOUT THE AUTHOR
Anthony Patton works with various technologies like Java, XML, HTML, and Domino.
He is the author of "Practical LotusScript" and "Domino Development With Java", both
available from Manning Publications. You can reach him via e-mail at
asp01@aye.net.

© Copyright 2001 Iris Associates, Inc. 13

