

by
Michael
Patrick

Level: Intermediate
Works with: Designer 5.0
Updated: 11/01/2000

To create a successful e-commerce Web site, you have to stay focused on
what's critically important—and one key component is providing customers
with a simple and satisfying shopping experience. Designing an application
that accomplishes this requires that you understand the big picture, but it also
involves paying attention to the details that can make or break a customer's
experience.

In this second article of the series, we again examine the Liberty Fund
e-commerce Web site, this time exploring how it implements three important
aspects of any e-commerce site: session tracking, add-to-cart shopping
capabilities, and product availability notifications.

As with the first article in the series, this article references a sample
database—in this case Liberty Fund Library 2—that you can download from
the Iris Sandbox. This sample database includes the design elements
discussed in Part 1 as well as those introduced here in Part 2.

This article assumes a solid understanding of how you design Notes/Domino
applications using Domino Designer R5.

Understanding session tracking
E-commerce solutions of all flavors have one thing in common: through a
variety of mechanisms, each customer is assigned a unique identifier so that
the actions of that individual can be recognized throughout their interaction
with the application. Whether this identifier is maintained at a client or server
level depends on the technology behind the solution.

Domino excels at session tracking of Web users—in certain situations. Here's
a typical scenario: John Doe makes a request of a database for which
anonymous access is not allowed, Domino challenges Mr. Doe to
authenticate, and once he has done so, Domino is then able to recognize him
on successive transactions with the server. Life is good.

But e-commerce is the proverbial banana peal laying in Domino's path: public
users certainly cannot be expected to authenticate prior to using your site.
John Doe, while being a man of generally pleasant disposition, has come to
expect instant gratification from his Web shopping experience (and why
shouldn't he?) and will become quite irate if prior to filling his virtual shopping
cart he must first create an account for himself and patiently wait to be added
to what is by now your large and ever-expanding Domino Directory. How,
then, can we keep Mr. Doe happy (hopefully "spend-happy") while
simultaneously assisting Domino in remembering him whenever he initiates a
server transaction?

The answer is to have the client (the Web browser in this instance) supply
identification to the server with every transaction. Saddling the client with this
responsibility makes for a more complex application, but only minimally so.
The Liberty Fund solution makes use of two different techniques to ensure
that customers continually identify themselves throughout their sessions.

Using cookies
The first technique uses cookies, which are simple to implement and

© Copyright 2000 Iris Associates, Inc. 1

Notes.net: Anatomy of a Domino e-commerce Web site (Part 2) "Iris Today" webzine at http://www.notes.net

transparent to users. Cookies are small bits of information that servers can
place on client machines to, among other things, identify individual users
within and across sessions with that same server. In that regard, cookies
have "persistence"—they hang around when the browser is shut down and
are there to be accessed when it's restarted. For instance, this is what allows
you to personalize content at many sites; whenever I return to such a site,
they might read a cookie on my machine and from that determine who I am,
heralding my return by splashing "Welcome, Mike!" across their home page.

In a similar vein, Liberty Fund takes advantage of another nice feature of
cookies. When a cookie is generated for one of its customers, it is set to
expire in one month. That means that for the next month, a customer is free to
visit the site as often as they like, placing items in their shopping cart; and
between visits their cart is maintained. When the customer returns, there is no
need for them to identify themselves; we simply pull their identification out of
the cookie and match it with the carts stored in our database.

So, one option available to Domino developers is to generate a unique
identifier (usually a number) for each customer and store that value in a
cookie on the customer's machine. Once there, each subsequent request will
result in the cookie being read, allowing that customer's actions to be tracked.
Again, cookies are nice because they are fairly robust. It's difficult (but by no
means impossible) for users to tamper with them, and from a user's
perspective, they function invisibly.

Now the bad news. Unless you've been living in a cave, you're no doubt
aware of the controversy surrounding cookies. The online community seems
to have divided into two camps. In one corner are the charitable souls who
view cookies as a necessary evil that allows for a richer browsing experience.
In the other, are those who see cookies as a means to nefarious ends and a
blatant violation of privacy. That cookies are controversial isn't the main
problem though; the snag lies with a user's ability to manually disable them.
Poof...there goes the stored session ID.

Using JavaScript to append a session ID to links
In the absence of cookies, what other option is available? If you read the first
article in this series, you're probably comfortable with appending parameters
to URLs, and a session ID is no different in this regard. Once a unique ID has
been generated, it can be passed from page to page via the URL. So far so
good. But if you think about it for a moment, this has one unsettling
implication: without exception, every link on every page will require the
session ID. That's fine for links we'll build "manually" within the code itself, but
what about links generated by Domino that we have no control over? Enter
JavaScript. With a few short lines of code, we can cycle through all the links
on a page (after the server has constructed the page, of course) and append
the session ID to each.

The drawback with JavaScript is that while cookies provide us the ability to
offer customers the aforementioned persistence across sessions (a shopping
cart that exists for an extended period of time and so on) the JavaScript
solution of appending a session ID to links does not provide anything of the
sort; the session ID is good for that session only. But by using both this
technique and cookies, we'll have covered the bases as much as possible.

An important caveat
And now, a caveat: Web application platforms of all flavors (and this includes
Domino) rely on the client (the customer's Web browser) to provide a unique
session ID to the server on successive transactions so that the server can
recognize a set of actions as those of a single individual. That being the case
(and Liberty Fund is no exception) cookies or JavaScript MUST be enabled by
the customer's browser for this and virtually all other e-commerce applications
to function as expected. If an individual has disabled both, there is no way to
reliably maintain a session ID and therefore no way to distinguish one

© Copyright 2000 Iris Associates, Inc. 2

Notes.net: Anatomy of a Domino e-commerce Web site (Part 2) "Iris Today" webzine at http://www.notes.net

customer from another.

Unfortunately, there's no workable solution for the session ID in the case
where both cookies and JavaScript are unavailable. This doesn't render an
application wholly unusable, however; indeed, Liberty Fund chose to allow
customers to browse their catalog even in the event they cannot maintain a
session ID (and hence use a shopping cart.) We'll see in the next article how
Liberty Fund handles this situation, but for now, it's important to note that
while a customer's shopping experience will be curtailed without cookies and
JavaScript, this does not by default leave them unable to access your catalog.

Implementing session tracking
Let's examine how session tracking is implemented in the Liberty Fund
Library 2 sample database. The heart of the solution lies with the Common
JS Header subform. If you examine the database's forms in Designer, you'll
notice that this subform has been included on every form without exception.
This is done for several reasons. First, there is no guarantee as to where a
customer will enter the application; if, for instance, a link was mailed to them,
they might very well jump straight into a catalog entry, in which case they
would still need a session ID just the same as if they had entered the site via
the home page. Then there is the case I just mentioned; if the URL must
transfer the session ID from page to page, that ID must be included as part of
every link without fail, thus implying that the mechanism for including it on
each link is part of every page/form.

Here's the Common JS Header subform in Designer:

In terms of fields, the subform is pretty simple. It consists of two
computed-for-display text fields, one called HTTP_COOKIE and the other,
$$HTMLHead. Both of these are marked as "Hide paragraph from Web
browsers" in the Field properties box.

HTTP_COOKIE's value is simply set to HTTP_COOKIE, which is a CGI
variable automatically returned by the server that contains any cookie
information the browser is storing for the current site. $$HTMLHead, as
always, is used for any HTML that must precede the form's BODY tag. This is
typically where the HTML that creates a cookie is placed, as we'll see in a
moment. Here's the formula for $$HTMLHead:

@If(HTTP_COOKIE=""; ""; @Return(""));

UniqueNumber := @Text(@Integer((1 - 16000)*@Random + 16000)) + "-" +
@ReplaceSubstring(@Left(@Text(@Now;"D1S1");" ");":";"");

© Copyright 2000 Iris Associates, Inc. 3

Notes.net: Anatomy of a Domino e-commerce Web site (Part 2) "Iris Today" webzine at http://www.notes.net

AdjDate := @Adjust(@Today;0;1;0;0;0;0);
Months:="Jan":"Feb":"Mar":"Apr":"May":"Jun":"Jul":"Aug":"Sep":"Oct":"Nov":
"Dec";
Days:="Sunday":"Monday":"Tuesday":"Wednesday":"Thursday":"Friday":
"Saturday";
Time := @Text(@Hour(@Now)) + ":" + @Text(@Minute(@Now)) + ":" +

@Text(@Second(@Now));

ExpDate := @Subset(@Subset(Days;@Weekday(AdjDate));-1) + ", " +
@Text(@Day(AdjDate)) + "-" +
@Subset(@Subset(Months;@Month(AdjDate));-1) + "-" +
@Text(@Year(AdjDate)) + " " + Time + " GMT";

"<META HTTP-EQUIV=\"Set-Cookie\" CONTENT=\"cartid=" + UniqueNumber
+ "; expires=" + ExpDate + "; path=/\">"

The first line simply checks the value returned by HTTP_COOKIE. If this value
is anything other than null, we can safely assume that a cookie already exists
for Liberty Fund and we won't overwrite it; the formula simply exits via the
@Return(""). If no cookie was found, we'll attempt to create one.

The second line of the formula is what actually generates the unique identifier,
which ends up calculating to a random number followed by a six-digit number
based on the current time. When concatenated it looks something like this:
11673-025500.

Next, there are a number of lines to perform date manipulation to determine
the expiration date of the cookie we'll be storing on the client machine. All
cookies are required to include an expiration date, at which point they are
removed from the client machine. Liberty Fund's cookies are designed to
expire after one month.

The last line actually stores the cookie on the client. The cookie is created
with the use of a META tag. The META tag is designed to convey "meta"
information about the document in which it's included, such as keywords for
search engines. It also includes the handy feature by way of its
HTTP-EQUIV="Set-Cookie" property of (you guessed it) writing cookie
information to a browser.

Two observations need to be made regarding the code above. First, note that
while I've thus far been referring to session tracking and session ID, in an
e-commerce setting these concepts are translated into the metaphor of a
shopping cart, hence the "cartid=" label incorporated into the cookie.
Likewise, the session identifier is referred to as the "CartID" throughout the
sample database, and I'll do the same for the remainder of this article.

Second, determining client cookie support is not as simple as asking a
browser, "hey, are cookies enabled?" Accordingly, aside from the check for
an existing cookie (which obviates our need to add one) this code will
unconditionally attempt to add a cookie via the META tag without knowing if it
is successful in doing so. Why do this? Since the absence of a cookie does
not necessarily imply that cookies have been disabled (an existing cookie
may have expired or this may be a customer's first visit to this site), it's easiest
to simply try and add one at this point. Remember, as discussed above, the
solution incorporates JavaScript that compensates for instances where
cookies aren't enabled, and there it will be simple to determine a customer's
cookie status.

Speaking of which, the JavaScript is all that remains to be discussed of the
Common JS Header subform. The variable declarations and functions are all
included as part of the subform's JS Header object. I'll first present the code
and then follow with an explanation of what it accomplishes:

© Copyright 2000 Iris Associates, Inc. 4

Notes.net: Anatomy of a Domino e-commerce Web site (Part 2) "Iris Today" webzine at http://www.notes.net

var cartID;

function initializepage() {
//Look for CartID in cookie first
var cookies=document.cookie;
cartID = getcartid("cartid", cookies, ";");
//If cookies aren't enabled, first determine if customer is coming from an
external site. If so, a new CartID must be generated for them. If they are
changing pages within Liberty Fund, simply get the CartID from the URL
if (cartID==null) {

if (document.referrer.substring (0, 30).toLowerCase() != "
http://catalog.libertyfund.org") {

cartID=randomnum();
}

else {
var URLcartid = new String(document.URL);
cartID=getcartid("cartid", URLcartid, "&");
}

}
//Append CartID to all links on the current page, regardless of whether
cookies are enabled or not
setlinks(cartID);

}

function randomnum() {
var TodaysDate=new Date();
var rn =
Math.floor(16000*Math.random()+1)+"-"+TodaysDate.getHours()+
TodaysDate.getMinutes()+TodaysDate.getSeconds();
return rn;

}

function setlinks(v) {
for (var i = 0; i < document.links.length; i++) {

//Use the search property of the link object to append the CartID
document.links[i].search=document.links[i].search + "&CartID=" +v
}

}

function getcartid(name, inputstring, trunc) {
//Simply parses out CartID from either the cookie or URL passed to
function
inputstring = inputstring + trunc;
inputstring = inputstring.toLowerCase();
 var start=inputstring.indexOf(name + "=");
if (start>-1) {

start=inputstring.indexOf("=", start)+1
}
var end = inputstring.indexOf(trunc, start);
if (start==-1 || end==-1) {

value=null
}
else {

var value=unescape(inputstring.substring(start,end))
}
return value;

 }

Before examining the functions, it's important to mention that our goal with the
code above is to have it execute when each page of the site loads in the
browser. Of course, this will only happen when JavaScript is enabled by the
browser; when it isn't, we're relying on the cookie to maintain the Cart ID. But

© Copyright 2000 Iris Associates, Inc. 5

Notes.net: Anatomy of a Domino e-commerce Web site (Part 2) "Iris Today" webzine at http://www.notes.net

JavaScript functions don't call themselves; they must be explicitly executed.
This being the case, in conjunction with the Common JS Header subform,
each form in the database includes, as part of its onLoad object, the call:

initializepage()

You'll notice that initializepage is the first function defined in the JavaScript
included above. So, whenever any Liberty Fund page loads, initializepage is
called. Whether or not anything actually happens is, again, dependent on the
JavaScript status of the individual browser. First, initializepage attempts to
access any cookies that may exist for this site through the document.cookie
property. If a cookie does exist, the CartID is parsed out via the getcartid
function and then it's appended to all the links on the current page. Since the
cookies exists, we could continually access the CartID from it; we don't have
to append the CartID to the links, but it's a good practice to include it
wherever possible. Remember, one person's paranoia is another's insurance.

When document.cookie does not return anything, the JavaScript must take
control of maintaining the CartID. With one notable exception, this would be a
matter of simply accessing the current URL, parsing out the CartID included
there, and appending it to the current page's links. However, if Customer A
sees an interesting item in the catalog and decides to mail a link to Customer
B, that link includes (ominous pipe organ music, please) Customer A's CartID.
This is not an issue when Customer B has cookies enabled; following the link,
the application will either recognize a cookie for Customer B if one exists or it
will create a new cookie, thus giving Customer B their own CartID. The
problem arises when Customer B has disabled cookies. In this case, it's up to
the JavaScript to determine the customer's CartID. This is done via the
document.referrer property, which reflects the URL that called the current
page. If the value returned reflects anything other than "
http://catalog.libertyfund.org,"the customer has entered the catalog from
another site, in which case a new CartID will be generated for them.

Before we move on, let's look at how the CartID is appended to each link on a
page. This is done by the setlinks function, which is called from initializepage.
The property document.links.length returns the number of links on a page,
and this value is used it iterate through them with the statement:

for (var i = 0; i < document.links.length; i++)

Additionally, document.links[i] will return a single link object, and it's search
property returns everything on the link following the "?". This property is
editable, so we can set it to itself with the CartID appended to the end:

document.links[i].search=document.links[i].search + "&CartID=" +v

To summarize, we've just seen two distinctly independent methods that allow
browsers to maintain a unique identifier in the form of a CartID. Cookies are
preferable, but JavaScript is a capable substitute when cookies are not an
option. Either provides Domino with the ability to perform unauthenticated
session tracking—the crucial element in any e-commerce solution. But keep
in mind that the techniques we've just examined are applicable to more than
e-commerce solutions. Anytime tracking an anonymous user's actions within
your site becomes necessary, cookie/JavaScript session IDs are an effective
combination.

Implementing add-to-cart capabilities
Now that we've seen how to create and maintain a Cart ID, it's time to
examine the process of actually placing items into the shopping cart. In doing
so, we'll see how the Cart ID is used to keep track of customer purchases.

Each item in the Liberty Fund catalog is presented via the Catalog Entry form.
In the sample database there are two of these—one hidden from the Notes

© Copyright 2000 Iris Associates, Inc. 6

Notes.net: Anatomy of a Domino e-commerce Web site (Part 2) "Iris Today" webzine at http://www.notes.net

client and the other hidden from the Web. Since maintenance of the catalog
items is done through the Notes client and the presentation of the items is
delivered to browsers, it made sense in this case to keep these two distinct
functions on separate forms. Feel free to examine the Notes client version of
the Catalog Entry form at your leisure; it serves to capture the details
pertaining to catalog items. Its Web counterpart is where we want to focus.
Before looking at the Web version in Designer, here is what a catalog item
ultimately looks like via a browser:

Notice that this particular item is available in both hardcover and paperback
versions, each with its own "Add to cart" link at the left. Let's look at how the
links are built and how the item information is presented by taking a detailed
look at the Web version of the Catalog Entry form in Designer:

Of primary interest are the four fields running the width of the form at the very
bottom of the screen: AddtoCart, MediaTypes, MediaISBNs, and MediaPrices.
The latter three are all multi-value, computed-for-display fields—MediaTypes
and MediaISBNs are text and MediaPrices is numeric so that its format can
be set to Currency—and their formula values are simply the same as the
name of their respective fields. For instance, the value of MediaTypes is
"MediaTypes," which is a field stored in the document for this catalog item.
Since the multi-value separator for each field is "New Line," the values appear
as separate line items; the publication pictured above contains the values
"Hardcover" and "Paperback" in its MediaTypes field, both of which appear on

© Copyright 2000 Iris Associates, Inc. 7

Notes.net: Anatomy of a Domino e-commerce Web site (Part 2) "Iris Today" webzine at http://www.notes.net

their own lines. Likewise, MediaISBNs and MediaPrices each contain two
values, the first value corresponding to the hardcover item and the second
adding detail to the paperback item. If there were three items under this same
title, each field would contain three values, and so on.

The same holds true for the AddtoCart field, which builds the "Add to cart"
links. It too, is a multi-value, computed-for-display text field whose separator
is set to "New Line," but it's formula is a little more complex:

"[<A HREF=\"/" + ThisDBW + "/AddtoCart?OpenAgent&ISBN=" + MediaISBNs
+ "\"><FONT FACE=\"Times New Roman\" COLOR=\"#000080\" SIZE=3
onMouseover=\"this.color=\'#800000\';\"
onMouseout=\"this.color=\'#000080\';\">Add to cart]"

Thanks to the list processing power of Notes, when a multi-value field is
included as part of the value returned by a formula, an instance of that value
will be returned for each of the multi-value field's values. In the example
above, this results in a unique link being constructed for each of the
MediaISBNs values (and, again, there are two of them in the example above).

Breaking down the formula is a straightforward process. The beginning of the
link's HREF includes a reference to the ThisDBW field, which is included at
the top of the Catalog Entry form and evaluates to the current database's
path. ThisDBW's formula is:

@ReplaceSubstring (@Subset (@DbName; -1); "\\" : " "; "/" : "+")

This replaces Domino's "\\" with a URL-friendly "/" and does the same for
spaces, replacing them with "+." Standard stuff.

It's what comes after ThisDBW that deserves our attention. You can probably
guess from the "AddtoCart?OpenAgent" portion of the link that an agent
called AddtoCart will be called. This agent will "place" individual items in the
shopping cart. How does it know what to place in the cart? That's where the
parameter "&ISBN=" comes in; each link will have one of the values in
MediaISBNs appended to it. The AddtoCart agent will then use that value to
find the item in the database.

When I indicated the AddtoCart agent would "place" an item in the cart, I used
quotation marks because to the user that's exactly what appears to happen,
but in reality, this agent creates an "order item" document in the database.
This new document stores the Cart ID of the customer and the specifics of the
item—its ISBN, media type, price, and the quantity being ordered. In the event
that an order item document already exists for this customer and item, the
quantity will merely be increased by one. So, for each unique item a customer
orders, a separate document is created to capture details relating to that item.
Web agents are typically marked to run "Manually From Agent List" and as
"Run once" under "Which document(s) should it act on?" and this one is no
exception. You can go to the AddtoCart agent sidebar to see the complete
code for this agent, or check out the Liberty Fund Library 2 sample
database.

The agent's last line:

Print "[" + vPath(0) + "/cart?ReadForm&CartID=" + vCartID(0) + "]"

actually opens a customer's cart and displays the items it contains. This is
accomplished by use of the LotusScript Print statement, which when
combined with square brackets, tells the browser to redirect to the enclosed
URL. In this case, the redirection opens the database's Cart form. This form
will be covered in the third installment of the series (and will be included with
the sample database for that article), so suffice to say that its function is to
collect all the documents matching the customer's Cart ID and then supply the

© Copyright 2000 Iris Associates, Inc. 8

Notes.net: Anatomy of a Domino e-commerce Web site (Part 2) "Iris Today" webzine at http://www.notes.net

traditional functions of a shopping cart—the display of item information,
allowing changes to quantities, providing a checkout mechanism, and so on.

Implementing availability notifications
Before we wrap up, let's take a look at another important function the Catalog
Entry form includes.

Any good e-commerce site must capitalize on opportunities to draw
customers back for subsequent visits. One good way to do this is to notify
customers via email when an item in which they're interested becomes
available. This allows a site to preview upcoming products and generate
interest in them, not to mention serving as a nice convenience for customers.

This functionality is incorporated into the Liberty Fund site through the Web
version of the Catalog Entry form, but there are a number of elements that
make availability requests work. In fact, you'll notice some striking similarities
between this code and that of the catalog search functionality explained in
Part 1 of this series. That technique was treated in detail there, so where
these two features overlap, I'll be brief in my explanation.

First take a look at an item from the catalog that is not yet available:

Notice that under the title and author information there is text informing
customers that they can be notified when the current title becomes available.
There's also an input field for their email address and a submit button. These
elements only appear on those items that are marked in the catalog as not yet
available. Notice too that there are no links to add this item to the cart; these
are only supplied when the item is actually available for sale.

Now let's assume a customer has entered their email address and pushed the
submit button. Although this action initiates quite a bit of activity
behind-the-scenes, from the perspective of the customer, the item they are
currently viewing simply redisplays with a confirmation message replacing the
notification text, input field, and submit button:

© Copyright 2000 Iris Associates, Inc. 9

Notes.net: Anatomy of a Domino e-commerce Web site (Part 2) "Iris Today" webzine at http://www.notes.net

Now that we've seen the end result, look again at the Web version of the
Catalog Entry form in Designer:

The notification text, input field, and submit button are all generated by HTML
contained in the Available_Notification_HTML field, which is
computed-for-display text and has the following formula:

"[</form><form METHOD=post ACTION=\"/" + ThisDBW +
"/Notification+Query?CreateDocument\" NAME=\"_DominoForm\">
<I>To be notified when this title
becomes available, simply
provide us your Email address:

</I>
<INPUT NAME=\"Email\" VALUE=\"\">
<INPUT TYPE=submit VALUE=\"Submit\">

<INPUT NAME=\"ID\" VALUE=\"" + ID + "\" Type=\"Hidden\">
<INPUT NAME=\"Title\" VALUE=\"" + Title + "\" Type=\"Hidden\">
<INPUT NAME=\"Subtitle\" VALUE=\"" + Subtitle + "\" Type=\"Hidden\">
<INPUT NAME=\"Authors\" VALUE=\"" + @Implode(AuthorsDisplay; "!!") + "\"
Type=\"Hidden\">
<INPUT NAME=\"Created\" VALUE=\"" + @Text(@Now) + "\"
Type=\"Hidden\">
<INPUT NAME=\"BacktoView\" VALUE=\"" + HTTP_Referer + "\"
Type=\"Hidden\"></form>]"

© Copyright 2000 Iris Associates, Inc. 10

Notes.net: Anatomy of a Domino e-commerce Web site (Part 2) "Iris Today" webzine at http://www.notes.net

If this code sets off alarm bells, that's because it's almost identical to how the
Liberty Fund searches are constructed. First, a form is included in the middle
of the page with its ACTION attribute set to create a new document—in this
case using the Notification Query form. In other words, once the customer
supplies their email address and presses the submit button, they are in fact
creating a new document in the database that will capture the specifics of the
item in which they are interested. Those specifics are supplied by the INPUT
tags such as ID, Title, Subtitle, and so on, all of which are hidden, allowing the
customer to remain oblivious to the passing of this information to the new
document.

The last INPUT element, named "BacktoView," requires explanation. As a
general navigation rule, we always want the ability to return a customer to the
previous screen without resorting to the use of their browser's Back button.
Normally, that's easy to accomplish; the CGI variable HTTP_Referer contains
the URL from the previous page, which can simply be used as the basis for a
"Back" link. If you'll refer to the screens of the catalog item above, notice the
"Back one page" link to provide just that.

But as we'll see in a moment, when a customer submits a notification request,
they are actually sent off to create a new document using the Notification
Query form and then immediately redirected back to the Catalog Entry
document from which they submitted the request. This poses a problem:
when the Catalog Entry document reappears, HTTP_Referer is no longer
pointing to the view or search results from which the customer entered the
current catalog entry in the first place but instead returns the URL used to
create the Notification Query. In short, by the time the process of creating an
availability notification request is complete, we are unable to determine where
the customer came from in order to view the catalog item! So, before sending
them off to the Notification Query form and back to the Catalog Entry, we'll
pass the URL from which they originally came (at this point, HTTP_Referer
does still point there) to the Notification Query form.

Let's look at the sample database's Notification Query form and see what
happens there. This form serves much the same purpose as the
ViewSearchGeneric form (again, detailed in the Part 1); it captures the data
being submitted as part of the availability notification request, and its
$$Return field provides redirection. It's important to note that the customer
never sees this happen. Here's the Notification Query form in Designer:

The form contains a matching editable text field for each value that was
passed via the INPUT tags on the Catalog Entry's notification form submit.
But whereas the ViewSearchGeneric's $$Return field redirected the browser
to a Domino search URL, the Notification Query form's $$Return is designed
to redirect the customer right back to the catalog item from which they
submitted the notification request. It does so by way of the formula:

"[" + HTTP_Referer + "&BacktoView=" + BacktoView +"]"

The formula's return value is surrounded by square brackets, which tell
Domino to redirect the browser to whatever is included between them. When
the Notification Query is being created, HTTP_Referer contains the URL of

© Copyright 2000 Iris Associates, Inc. 11

Notes.net: Anatomy of a Domino e-commerce Web site (Part 2) "Iris Today" webzine at http://www.notes.net

the Catalog Entry, and that's exactly where customers should return, making
the creation of the Notification Query document seamless; the customer never
sees the document creation occur. The final part of the redirect URL this
formula builds is the appending of the BacktoView parameter, which will
reflect the value passed from the Catalog Entry—and remember, this contains
the URL of where the customer was before initially viewing the Catalog Entry.
More on this in a moment.

The one remaining difference between the Notification Query form and the
ViewSearchGeneric form is that while we wanted to avoid saving search
documents in the database because they were simply temporary documents
used to capture search criteria and redirect to the search itself, we most
certainly do want to save documents created by the Notification Query form.
Hence the absence of a SaveOptions field, which would normally be used to
prevent a document from being saved.

Following the availability notification process to conclusion, customers will
now find themselves back at the Catalog Entry they were just viewing,
completely unaware that actually went anywhere else. Here is where the
application needs to hide those elements created via the
Available_Notification_HTML field (text, input field, and submit button) and
display the confirmation message. In the Catalog Entry form, this message is
represented by the Notification_Confirmation_d field. It's computed-for-display
text and simply returns the string "Thank you for your interest in this title. You
will be notified by Email when it becomes available."

But how are Available_Notification_HTML and Notification_Confirmation_d
being hidden/unhidden? Say hello to our dear old friend, the BacktoView
parameter on the URL. When a not-yet-available catalog item is first
displayed, there is no "BacktoView" parameter on the URL since that is added
as part of the availability notification process. Accordingly, the hide-when
formula for Available_Notification_HTML field looks like:

Available = "1" | @Contains(Query_String; "BacktoView")

The first part of the OR condition above says that if the Available field on the
underlying document for this catalog entry is 1, this item is currently for sale,
in which case we don't want to display the availability notification information.
But we also don't want to display it if the URL used to display the current item
contains the BacktoView parameter—meaning a Notification Query was just
created and the customer is now viewing the results of that action. This is
determined through the Query_String field, which returns everything to the
right of "?" in a URL. At this point, Available_Notification_HTML is hidden, and
Notification_Confirmation_d is unhidden, thanks to its hide-when formula:

!@Contains(Query_String; "BacktoView")

Although negative logic is inherently evil, we'll allow it in the case of
hide-when formulas. The preceding formula simply says that the confirmation
message should be hidden at all times except when the URL contains the
BacktoView parameter, at which time we know that the customer is returning
from creating a Notification Query.

Just a few remaining points, I promise. There is still the matter of the "Back"
links—the whole reason behind the BacktoView parameter. For convenience,
there are two such links on the Catalog Entry form, one near the top and the
other near the bottom of the form. Built by the BackToView and
BackToView_1 fields, both are computed-for-display text and have the
formula:

"[<a href=\"" + @If(@Contains(Query_String;
"BacktoView");@Right(Query_String; "BacktoView=");HTTP_Referer) + "\">
< Back one page."

© Copyright 2000 Iris Associates, Inc. 12

Notes.net: Anatomy of a Domino e-commerce Web site (Part 2) "Iris Today" webzine at http://www.notes.net

Remember, if the customer is simply viewing a catalog item, HTTP_Referer
will get them back to where they just came from, whether that is from a view
or a set of search results. If, however, the current page's URL contains
"BacktoView," we know that the customer has just created a Notification
Query and, in order to send them back to the original view or search results,
we've got to use the URL we stored in the BacktoView parameter at the start
of the Notification Query process. Accordingly, that value is simply parsed out
of the Query_String with @Right.

Of course, what you do with all the Notification Queries being created by your
customers is another matter entirely. As you can see in the sample database,
Liberty Fund limits these documents to a view called Notification Queries
whose view selection formula limits the documents shown to:

SELECT Form = "Notification Query"

Then, a daily scheduled agent called Availability Notifications runs against the
documents in that view, using the item ID of each to find that item in the
catalog and determine if it is finally available. If so, a notification email
message including a link to that item is constructed and sent to the customer.
Then that Notification Query is deleted from the view. You can see the
complete code for the agent that processes these queries in the Liberty Fund
Library 2 sample database or in the Availability Notifications agent sidebar.

With the technique we've just examined, customers can be supplied with a
nice, simple interface for indicating their interest in upcoming catalog items.
While there is quite a bit of action underway in the database to facilitate this,
to the customer, it translates into the simple click of a button. And I'm sure it
comes as no surprise that a relatively small feature equates to a rather
elaborate implementation!

Where next?
So far in this series, we've seen how to address navigational challenges, track
customers by unique IDs, display items and add them to a shopping cart, and
create availability notifications. The next logical step is to dissect the shopping
cart itself, and that's exactly what we'll do in the next month's article. In fact,
we'll tackle the whole ordering process, which includes the finalization of cart
contents, collecting customer information, and basic credit card processing.
Along the way, we'll see a few neat little tricks that you may not be familiar
with, so be sure to check back for the final installment!

ABOUT THE AUTHOR
Michael Patrick is a Senior Consultant with Knowledge Resource Group in
Indianapolis, Indiana.

© Copyright 2000 Iris Associates, Inc. 13

]

The AddtoCart agent
Here is the code for the AddtoCart agent:

Sub Initialize
Dim s As New NotesSession
Dim db As NotesDatabase
Dim doc As NotesDocument, oiDoc As NotesDocument, cDoc As NotesDocument
Set db = s.CurrentDatabase

Set doc = s.DocumentContext

Dim vCartID As Variant, vISBN As Variant, vItemID As Variant, vMedia As Variant, vQuantity As Variant,
vPosn As Variant, vPath As Variant
Dim vOrderKey(1) As String

'Determine CartID
vCartID = Evaluate ({ @Middle (@LowerCase(Query_String) + "&"; "&cartid="; "&") }, doc)
If vCartID(0) = "" Then

vCartID= Evaluate({@Middle(@LowerCase(HTTP_COOKIE) + ";";"cartid=";";")}, doc)
End If
'Get ISBN from URL
vISBN = Evaluate ({ @Middle (@LowerCase(Query_String) + "&"; "&isbn="; "&") }, doc)

'Get the catalog document using the ISBN as the key
Set cDoc = db.GetView ("ISBNLookup").GetDocumentByKey (vISBN(0))

' Get the existing order item document, if it exists.
vOrderKey(0)=vCartID(0)
vOrderKey(1)=vISBN(0)
Set oiDoc = db.GetView ("OrderISBNLookup").GetDocumentByKey (vOrderKey)

' Create new order item document in the event one was not found
If oiDoc Is Nothing Then

Set oiDoc = db.CreateDocument
oiDoc.Form = "OrderItem"
oiDoc.CartID = vCartID
oiDoc.Quantity = 1
oiDoc.ISBN = vISBN
oiDoc.Title = cDoc.Title
oiDoc.Author = cDoc.Author

'Get position of media type from catalog and retrieve
cDoc.tempISBN = vISBN
vPosn = Evaluate ({@Member (tempISBN; MediaISBNs)}, cDoc) ' position of ISBN in catalog entry doc
cDoc.tempPosn = vPosn
vMedia = Evaluate ({@If (tempPosn = 0; "Error"; @Subset (@Subset (MediaTypes; tempPosn); -1))},
cDoc)
oiDoc.Media = vMedia

Else
oiDoc.Quantity=oiDoc.Quantity(0) + 1

© Copyright 2000 Iris Associates, Inc. 1

Notes.net: Anatomy of a Domino e-commerce Web site (Part 2) (AddtoCart agent sidebar)"Iris Today" webzine at http://www.notes.net

End If

'Even if this is an existing Order Item we can go ahead and update the information. Possibly prices have
'changed.
cDoc.tempISBN = vISBN
vPosn = Evaluate ({@Member (tempISBN; @lowercase (MediaISBNs))}, cDoc) ' position of ISBN in catalog
entry doc
cDoc.tempPosn = vPosn
vPrice = Evaluate ({@If (tempPosn = 0; "Error"; @Subset (@Subset (MediaPrices; tempPosn); -1))}, cDoc)
oiDoc.Price = vPrice

Call oiDoc.Save (True, True)

'Set URL path for return
vPath=Evaluate({@ReplaceSubstring (@Subset (@DbName; -1); "\\" : " "; "/" : "+")})
Print "[" + vPath(0) + "/cart?ReadForm&CartID=" + vCartID(0) + "]"

End Sub

© Copyright 2000 Iris Associates, Inc. 2

]

The Availability Notifications agent
Here is the code for the Availability Notifications agent:

Sub Initialize
Dim session As New NotesSession
Dim db As NotesDatabase
Dim availabilityView, catalogView As NotesView
Dim availabilityQuery, catalogEntry, notification, tmpDoc, profiledoc As NotesDocument
Dim rtitem As NotesRichTextItem

Set db = session.CurrentDatabase
Set availabilityView = db.GetView("Notification Queries")

Set profiledoc = db.GetProfileDocument("ApplicationSettings")
If profiledoc Is Nothing Then

Exit Sub
End If

Set catalogView = db.GetView("(CatalogByID)")

Set availabilityQuery = availabilityView.GetFirstDocument

While Not (availabilityQuery Is Nothing)

' Search the catalog for the title the customer originally expressed interest in

Set catalogEntry = catalogView.GetDocumentByKey(availabilityQuery.ID(0))

' If we couldn't find the title, mark the notification query as 'failed' and move to the next one

If catalogEntry Is Nothing Then

availabilityQuery.Failed = "Failed"
Call availabilityQuery.Save(True, False)
Set availabilityQuery = availabilityView.GetNextDocument(availabilityQuery)

Else

' If the title was found in the catalog, only process notifications for those titles that are now available

If catalogEntry.Available(0) = "1" Then
Set notification = db.CreateDocument
Set rtitem = notification.CreateRichTextItem("Body")
Call rtitem.AppendText("The following title is now available from Liberty Fund:")
Call rtitem.AddNewLine(2)
Call rtitem.AppendText(availabilityQuery.Title(0))
Call rtitem.AddNewLine(1)
If (availabilityQuery.Subtitle(0) <> "") Then

Call rtitem.AppendText(availabilityQuery.Subtitle(0))
Call rtitem.AddNewLine(1)

© Copyright 2000 Iris Associates, Inc. 1

Notes.net: Anatomy of a Domino e-commerce Web site (Part 2) (Availability Notifications agent sidebar)"Iris Today" webzine at http://www.notes.net

End If

' To pass a multi-value author field from the catalog entry to the availability query, we had to
concatenate all the authors together with '!!'. Now, we parse them apart and show them on
separate lines of the notification email

auths = Evaluate(|@Explode(Authors; "!!")|, availabilityQuery)
Forall x In auths

Call rtitem.AppendText(x)
Call rtitem.AddNewLine(1)

End Forall

Call rtitem.AddNewLine(1)
Call rtitem.AppendText("For more information, or to order this item, please use the following
link:")
Call rtitem.AddNewLine(2)
Call rtitem.AppendText(profiledoc.WebServerURL(0) + "/" + profiledoc.LibraryDBW(0) +
"/CatalogByID/" & availabilityQuery.ID(0))
Call rtitem.AddNewLine(2)
Call rtitem.AppendText("Thank you,")
Call rtitem.AddNewLine(2)
Call rtitem.AppendText("Liberty Fund Customer Service")
notification.SendTo = availabilityQuery.Email(0)
notification.Subject = "The Title You Requested Now Available From Liberty Fund"
Call notification.Send(False)

' Grab the next document before we delete the one we're working on

Set tmpDoc = availabilityView.GetNextDocument(availabilityQuery)

' Remove the availability query after we've processed it

Call availabilityQuery.Remove(True)
Set availabilityQuery = tmpDoc

Else

' Item is not yet available, so grab the next one
Set availabilityQuery = availabilityView.GetNextDocument(availabilityQuery)

End If

End If

Wend

End Sub

© Copyright 2000 Iris Associates, Inc. 2

