
The Architecture of the Domino Web server, Part 1
by Richard Schwartz

[Editor's note: This article resides in "Notes Today", the technical Webzine located on the
http://www.notes.net Web site produced by Iris Associates, the developers of Domino/Notes.
This is the first in a two-part series of articles about the architecture of the Domino Web Server. This first
article focuses on the basic structure of the server and describes some of the behind-the-scenes
mechanisms that Domino uses to respond to requests for Web pages. The second article goes into more
detail about how Domino presents pages, accepts forms, performs searches, and executes agents.]

Introduction
The Lotus Domino Server contains several modules, or server tasks. One of those server tasks is the
Web, or HTTP server. When you type "LOAD HTTP" on a Domino server console, a remarkable
transformation occurs. Suddenly, the Domino server's world is opened up. Web developers gain access to
powerful tools for interactive application development, and Web clients gain access to great applications
built using technology previously available within Lotus Notes. This feature certainly has gotten a lot of
attention lately, partly because the Domino Web server has capabilities that make it unlike any other Web
server in existence. These capabilities make it much more than a cool way to open up existing Notes
applications to Web clients -- they make it a truly powerful tool for developing new Web applications.

From the outside, Domino Web servers mostly look like all other Web servers. They have only a few
distinguishing features that give away their underlying nature. One such feature, presenting "twisties" to
expand or collapse hierarchical information on pages, is immediately familiar to most Macintosh users and
it certainly feels natural to Notes R4 users, but it is rarely used in non-Domino Web applications. If you
see twisties on the Web, more likely than not, the site is Powered by Notes. Similarly, Action buttons
displayed in a row across the tops of pages and some elements of the URL language are also quite
familiar to the Notes-savvy observer. These visible features, all testaments to the Notes technology
environment underneath Domino, give away the fact that some really interesting things go on behind the
scenes of this Web server. This article will take you behind those scenes and help you understand how
the Domino 4.5a Web server works today. Please bear in mind, however, that some of the architectural
information in this article, of course, is subject to change in future releases.

Domino's heritage in the Lotus Notes family of products plays a large part in its unique capabilities. This
article seeks to help you understand what is going on behind the scenes in Domino, and Notes is a big part
of that, so if you are already comfortable with the concepts behind Lotus Notes you should be able to read
this article straight through. For readers unfamiliar with basic Notes concepts, a glossary sidebar is
available that introduces these concepts.

Domino.Basics
The Domino Web server is a Domino server task. It is written in C++ and it uses the Notes API to
integrate itself with the rest of the Domino server in the same way that all other server add-in tasks do. For
the most part, the Domino server task interacts with the rest of the Domino server the same way any 3rd
party add-in program would: with the Notes API. There are a few places where it accesses Notes internals
without the standard API, but never while it is reading NSF files. Its efficiency is primarily due to its clean
object-oriented design, not due to any special "hooks."

The Domino Web Server is comprised of two parts: the HTTP Server and the Domino App Server. These
can be thought of as the "front end" and "back end" of the overall server. The HTTP Server is a multi-
threaded task that listens for Web client requests and sends responses, in much the same way that the
Notes tasks in the Domino server listen for and respond to Notes client requests. That functional similarity
forces a departure from "pure" Notes API programming in the Web server code. Normal server tasks run
with the identity of an ID file that resides somewhere on the host file system, but in order to faithfully
implement the Notes security model for Web clients it is necessary for the thread servicing a request to

assume the identity of the logged-in user. This capability exists in the Notes server core as part of its own
security enforcement mechanism, but is not exposed through the Notes API, so the Domino Web server's
programmers went underneath the API to accomplish this. (The reason why this capability is not exposed
through the Notes API is because the Notes server must sometimes execute lookups or even scripted
"agents" on behalf of users, so it essentially acts as a proxy for the user. While doing this, it assumes the
identity of the user so that security will be automatically enforced. If this proxy capability were exposed
through the Notes API, a programmer with access to the Notes server could create code that impersonates
Web users and could gain access to private information.)

Domino.Front.End
The Domino Web server is (first but not necessarily foremost) an HTTP server. In other words, it is a
TCP/IP application that implements the HyperText Transfer Protocol. It answers URL requests from client
programs by sending back pages of data encoded in HyperText Markup Language (HTML). It also handles
URL requests and HTML forms that trigger executable programs according to the Common Gateway
Interface (CGI) specification. In these respects, the Domino Web server behaves just like any other HTTP
server, responding in the standard way to standard URL requests.

In fact, the front end of the Domino Web server is a complete, industrial-strength HTTP server with all the
usual facilities for accessing HTML pages stored in the file system of the host platform and running CGI
programs. The front end includes all the code that deals with both inbound and outbound HTTP
communications. When it receives a URL from a client, the first thing it does is pass it to the Domino URL
Parser, which examines it to see if it is a plain vanilla URL, or a special Domino URL. To distinguish a
Domino URL from a plain vanilla one, the parser attempts to break the URL into one, two, or three parts:
an object identifier is mandatory, a command and arguments are optional. If the object identifier is the site
name itself, or if the object identifier contains a Notes database name (*.nsf), it is a Domino URL. The
URL Parser simply returns any plain vanilla URL back to the front end where it is handled in the traditional
way. The handling of a Domino URL is more interesting.

Domino.URLs
Given the severely limited interaction that HTTP allows between a Web client and server, the Domino URL
by necessity is essentially a command language for Notes applications. the URL consists of an object
identifier, a command, and arguments. The object identifier specifies the host name itself, a Notes
database, a view, a document, an agent, and so on.

A typical Domino URL looks like this:

http://www.xyz.com/site/app.nsf/f34a868d3e2aa2a385256345006edae6?OpenView&login

The above sample URL makes reference to a Notes view (identified by the UNID of its design document --
the long string of hexadecimal digits) in the Notes database called site/app.nsf on the www.xyz.com server.
The rest of the URL, the command portion, is syntactically optional, but when it is left out, the URL Parser
determines the type of the object and supplies an implicit command appropriate for that object type. The
specific command in this sample URL is ?OpenView and contains an argument called &login to specify
that the Domino server should force authentication of the user prior to executing the command, even if the
access requirements for this view would not require it.

Domino URLs can be rather imposing to look at. This comes from the fact that when the Domino Web
server dynamically creates URLs from Notes database elements, it uses UNIDs rather than human-
comprehensible names. Although they appear cumbersome, UNIDs guarantee that Domino is
unambiguously identifying a note. All other forms of identification are potentially ambiguous. But Domino
does accept URLs without UNIDs, and as long as Domino programmers are careful to avoid ambiguities,
these URLs work just as well as the URLs with UNIDs. For example, the URL
http://www.xyz.com/site/app.nsf/By+Date?OpenView&login, which substitutes the view name "By
Date" for the UNID shown in the sample URL above, is understood by the URL Parser, and it is handled in
exactly the same fashion.

Domino.Performance
The URL Parser breaks a URL into different parts, performs a series of checks, provides implicit
commands when necessary, and then invokes the appropriate command handlers. These modules take
care of all the details associated with a specific command, establishing the correct identity for security
purposes, accessing Notes databases, executing formulas and scripts, and retrieving information.
Collectively, these modules, which are the core of the Domino App Server (or "back end") can be thought
of as a Notes client simulator written with the Notes API and running within the Domino server. In Domino
4.5a, the command handlers use four caches to improve their efficiency: the Database Cache, the Design
Cache, the HTML cache, and the Static Cache.

The Database cache holds C++ objects that the server requires in order to work with Notes databases.
The most important component of these objects is the "handle" of the Notes database. A handle is a data
structure used by the Notes API to identify an open database. Since users tend to repeatedly send URLs
that refer to the same databases, caching these handles avoids having to repeatedly make some of the
most expensive API calls.

The Design Cache is a set of hash tables, each containing the location of the Notes design elements of a
database. Since design elements are used so often (in the HTML translation of every document and view)
and change very infrequently, caching their location to avoid costly Notes API calls to locate them is
beneficial.

There are some specific situations where caching HTML makes sense, and that is the purpose of the
HTML cache. Since most Web browsers locally cache pages, there is little point in the server caching
HTML that is likely to be accessed by only one user. This assumes that users don't frequently access the
same server with two browsers, and this is usually a good assumption.

HTML representing a view is specific to a user if documents contain Reader fields. The Web server would
have to go around the security enforced by the Notes API in order to determine that there are no
documents with Reader fields that meet the selection criteria of the view. This would be terribly inefficient,
so HTML for view displays is not a candidate for sharing between users. There is, however, the case of
non-authenticated users. If an application allows non-authenticated access, it is likely that many different
browsers will be used to access it with the same identity ("Anonymous"). All these browsers can share the
HTML for views, so the HTML cache stores the output of ?OpenView commands.

The HTML generated in response to an ?OpenDatabase command may also be cached, but only in the
case where ?OpenDatabase returns the default page with links to the application's views and folders. If the

launch options of the Notes database have been set to open the application's About Page, or a specific
document or Navigator, then the ?OpenDatabase URL is redirected to another command handler whose
output is not cached.

HTML representing a document is specific to a user if formulas are dependent on @UserName or
@UserRoles, or if section security is used. Caching is also inappropriate if formulas are time-dependent.
Analysis of all the formulas and script associated with a document to determine all this is simply too
costly, so HTML representing documents is never cached.

The Static Cache is stored on disk rather than in RAM, and can be configured through settings in the
Server document in the Public Address Book. It is referred to as "static" because it doesn't necessarily go
away every time you reboot the server. This cache stores graphics and file attachments that have been
extracted from Notes documents and converted to the formats expected by Web browsers. The conversion
operations can be quite expensive, and in many cases the same graphics appear on many Web pages, so
this cache can be a significant boost to server performance.

Domino.HTML.Generation
In order to support its true goal of hosting rich interactive Web applications that publish, capture, and
process information, everything in the Domino Web server finally ends with the production of HTML to
send to browsers. An intelligent HTML Emitter is used by all the command handlers. The emitter depends
on a table-driven HTML Engine that has knowledge of the syntax and semantics of HTML to ensure that
the output always conforms to HTML standards. For example, the emitter keeps state information so that
it can ensure that termination tags are inserted wherever they are required. This reduces the complexity of
the command handlers dramatically. The object-oriented code responsible for translating a view column
entry or a field on a form can concentrate on its particular job without worrying about the HTML tags
generated for the previous view column or for the table inside the collapsible section on the form
containing the field. The result is that the on-the-fly HTML translation is remarkably efficient.

ABOUT THE AUTHOR

Richard Schwartz is founder and President of RHS Consulting Incorporated, a Lotus Business Partner and a member of the

Penumbra Group. He is a Certified Lotus Professional, Editor of Lotus Solutions Now, contributing writer for Lotus Notes

Advisor, and a frequent contributor to Notes In a Nutshell and other Notes-related publications. His activity in various Notes-

related forums on the Internet led to his being honored with a Lotus Business Partners' Beacon Award in January 1995. A key

contributor to Email, Directory and other network application product development at Wang Laboratories from 1983 to 1991,

Rich has nearly fifteen years of hands-on experience with groupware technology.

Copyright 1997 Iris Associates, Inc. All rights reserved.

