

by
Jonathan
Coombs

Level: Intermediate
Works with: Domino 5.0
Updated: 02/04/2002

One of Notes/Domino's greatest strengths is its ability to keep multiple
database replicas synchronized across multiple servers and remote
clients. However, this synchronization is not instantaneous, so frequent
updates to the same document across different replicas often generate
replication conflicts. Because of this risk, it's important to design any
replicated database in a way that encourages a given document's group of
editors to all edit it on the same replica. Furthermore, if the application
itself updates any system documents, there should only be one server on
which it updates a given document.

One practical implication of this limitation is that replicated applications
can't generate sequential numbers very easily. It's fairly simple to build a
sequential number generator that accesses and increments a hidden
counter document in the current database. But if that database is then
replicated across several servers and remote laptops, how is each replica
to instantly update the sequential counter? If a database with sequential
numbering does not take these issues into account, it cannot be
successfully replicated, because each replica would attempt to maintain its
own counter, resulting in duplicate numbers and replication conflicts on the
counter document.

It is also a good idea to take replication into account when you do not yet
intend for your application to be replicated. Even if you can guarantee that
it will not be replicated across servers, it's harder to prevent individual
users from creating local replicas. And of course, it's not uncommon for a
successful application to start out with a small local user base and then be
expanded to include a large international user base.

This article presents a reusable AutoNumbering tool that supports
replication by designating one "central" replica as the source of all
sequential numbers. All documents created in this central replica are
numbered immediately, but all other documents are numbered by a
scheduled agent once they arrive in the central replica. This article also
briefly explores some other replication-safe alternatives.

The reusable AutoNumbering tool is available in the sample
AutoNumbering database in the Iris Sandbox, along with some sample
design elements to illustrate its functionality. This kind of tool can be used
for robust incremental numbering in both replicated and nonreplicated
applications.

Preparing an application for sequential numbering
There are many kinds of applications that use sequential numbers. An
order tracking database is a typical example, so I have included a very
basic order form as the example in the sample database. To keep it
simple, I've assumed that customers will manually enter all of the order
information (item, quantity, and special instructions).

Example: an order tracking database

© Copyright 2002 Iris Associates, Inc. 1

Notes.net: Generating sequential numbers in replicated applications "Iris Today" webzine at http://www.notes.net

If you look at this form in Designer, you will see that each field name is
prefixed with f or fd: fDocNumber, fdDocNumber, fCustomer, fItem, fQty,
fComments, and fHardCode. These prefixes mean field and display field,
respectively, and conform to the naming conventions I use throughout the
database's design. The fDocNumber field is really the only significant field
on the sample form, because it will store the sequential numbers. The field
name is completely arbitrary, since it will be passed to the number
generator as a parameter. Since the field should not be edited, it's set to
be computed-when-composed.

Three necessary settings
There are three pieces of information that need to be provided by the
application in order for the AutoNumbering tool to function properly. The
first two are the name of the central server and the number of digits
desired per number. These two parameters can either be stored along with
the application's other settings, or they can be hard-coded.

The third necessary setting is the sequential number counter. It cannot be
hard-coded because its value will be incremented with each new order. To
keep things simple, the AutoNumbering code assumes that this counter
will be a numeric field in a normal Notes document (not a profile
document) that it can access and modify using a Lookup view.

For the sample application, I installed a generic Application Settings tool
and used it to store all three settings. The tool consists of one form
(frmSetting) and two views (vwSettings and vwLookSettings). Each setting
is stored in its own setting document so that it can be individually
maintained and secured.

© Copyright 2002 Iris Associates, Inc. 2

Notes.net: Generating sequential numbers in replicated applications "Iris Today" webzine at http://www.notes.net

For more information about the Application Settings tool, refer to the Iris
Today article, "Application settings tool: an alternative to profiles."

Creating the core AutoNumbering features
Now that the sample application and necessary settings are in place, along
with appropriate event handlers for requesting new numbers, let's see how
to build the actual AutoNumbering functionality.

There are two core functions that can be built once and directly reused in
different applications. The first is the function that increments the counter
document and returns a unique sequential number. The second is useful in
applications that store numbers as fixed-length strings; it converts the
sequential number into a string and adds leading zeroes as necessary.

These two functions, AutoNumberGet and AutoNumberCstr, reside in the
slANAutoNumbering script library in the sample database. To test them
directly, you can create an order, check "Use simple hard code," and click
Save & Close. The form's QueryClose event will call the AutoNumbering
functions using a set of hard-coded parameters:

Dim iTemp As Long
iTemp = AutoNumberGet("vwLookSettings",
"AutoNumbering*OrderCounter", "fValue", "", True)
doc.fDocNumber = AutoNumberCstr(iTemp, 5)
Call doc.save (False, False)

In plain English, the call to AutoNumberGet says, "Find a document named
AutoNumbering*OrderCounter in the vwLookSettings view and get the next
order number from its fValue field. Regardless of what server I'm currently
on, return the number, increment it by one, and save it back to the counter
document." The call to AutoNumberCstr says, "Take the sequential
number and add as many leading zeroes as it takes to make it into a string
of at least five digits."

Getting a sequential number
So what actually happens inside of AutoNumberGet? Most of the time, not
much. Without its error handling code, the core of the function looks
something like this:

Function AutoNumberGet (strANView As String, strANKey As String,
strANField As String) As Long

Dim s As New NotesSession, db As NotesDatabase
Dim vwAN As NotesView, docANCounter As NotesDocument
Dim varANValue As Variant, lngANValue As Long

© Copyright 2002 Iris Associates, Inc. 3

Notes.net: Generating sequential numbers in replicated applications "Iris Today" webzine at http://www.notes.net

Dim itemNewAN As NotesItem, iReturn As Long

Set db = s.CurrentDatabase
Set vwAN = db.GetView(strANView)

Set docANCounter = vwAN.GetDocumentByKey (strANKey, True)
varANValue = docANCounter.GetItemValue(strANField)
lngANValue = Clng(varANValue(0))
Set itemNewAN = docANCounter.ReplaceItemValue _

(strANField, Cstr(lngANValue+1)) 'increment the number by one
Call docANCounter.save(False,False) 'save the numbering doc
iReturn = lngANValue

AutoNumberGet = iReturn

End Function 'AutoNumberGet

After declaring the list of parameters and variables, the function finds the
specified view, document, and counter field within the current database,
and retrieves the counter's value. It then increments and saves the counter
so it will be ready for next time. (Notice that the function returns a value of
type Long, to support applications with very large sequential numbers.)

As straightforward as this is, there are quite a few situations in which this
simple function could fail. Of course, the function must fail gracefully if it's
called on any server except the central one, and there are other possible
problems too. The counter document might have been deleted, or the user
might not have access to modify it, or (in very high-usage applications)
there might be a save conflict on the counter document. Finally, some
error unforeseen by the programmer might occur.

The rest of the code in the full version of AutoNumberGet is there to
protect against these errors. (To examine the full code, see The
AutoNumberGet function sidebar.) To keep the design simple and
protect the calling code, I chose to handle all errors internally and, if
necessary, flag them by returning negative numbers. This is simpler than
throwing real exceptions, although it is nonstandard and perhaps less
flexible.

To prevent replication conflicts, AutoNumberGet takes the name of the
central server as a parameter and compares it to the current server,
returning -1 if the current server is not the central server. It returns -2 if the
counter document doesn't exist, -3 if the current user does not have
access to update the counter document, -4 if there is a save conflict, and
-9 for other errors.

There are two ways the AutoNumberGet function can handle save
conflicts, depending on whether the Fail Proof feature is enabled. If it's
enabled and a save conflict occurs, the counter document is released and
reopened, and once again a new number is retrieved, incremented, and
saved. This process repeats until the counter is successfully incremented.
If the Fail Proof feature is disabled, however, a save conflict on the first try
causes the function to fail and return -4.

Adding leading zeroes
After a sequential number has been successfully generated, it's often
desirable to store it as a fixed-length string. The AutoNumberCstr function
takes a positive number, converts it to a string, and determines the
difference between its length and the desired length. It then builds a string
of zeroes to make up the difference and adds it to the beginning of the
numeric string.

Function AutoNumberCstr (iAN As Long, iChars As Integer)
As String

© Copyright 2002 Iris Associates, Inc. 4

Notes.net: Generating sequential numbers in replicated applications "Iris Today" webzine at http://www.notes.net

Dim strANin As String, strReturn As String
Dim intPadding As Integer, strPadding As String
Dim iANLength As Integer, i As Integer

strANin = Cstr (iAN)
iANLength = Len (strANin)

If (iChars = 0) Or (iANLength >= iChars) Then
strReturn = strANin 'no padding needed

Else
'Pad with a string of zeroes
intPadding = iChars-iANLength
strPadding = ""
For i = 1 To intPadding

strPadding = strPadding + "0"
Next
strReturn = strPadding + strANin

End If

End Function 'AutoNumberCstr

The slANAutoNumbering script library is intended to be directly reusable
across multiple applications without any customization at all. This is
important because it allows you to maintain the master copy in a central
design template and have each installation inherit its design from that
template. Distributing bug fixes and enhancements using design
inheritance can be easy and relatively safe, while manual distribution is
tedious and prone to introducing discrepancies into the various installed
copies over time.

For more information about managing reusable design elements, refer to
the Domino Designer Help and the Iris Today article, "Application
settings tool: an alternative to profiles."

Connecting an application with the AutoNumbering
tool
Remember that the number counter must only be modified on one
designated "central" server, and so this central server is the only one that
can assign new numbers. In the sample application, if an order is created
on a noncentral server, the fDocNumber field needs to remain unassigned
until the order has replicated to the central server. If the order is created on
the central server, however, the application can go ahead and get a
number immediately.

Deciding when to assign numbers
We've already seen a simple hard-coded example of requesting a
sequential number directly from a Notes client form's QueryClose event.
It's also quite likely that the application will be accessed by Web clients. I
chose to allow both options, so the form in the sample database directly
requests an automatic number both on WebQuerySave and on
QueryClose.

Warning: If you choose to allow direct number assignment in a real
application, keep in mind that a form's QueryClose code runs in the Notes
UI under the current user's authority, and every potential order creator
therefore needs permission to update the counter setting. (The scheduled
agent and the form's WebQuerySave agent won't have this problem
because they run under the authority of the developer who signed them.)
So, unfortunately, this convenient and direct approach is not very secure,
because any order creator with a Notes client could corrupt the counter by
setting it to an invalid number.

© Copyright 2002 Iris Associates, Inc. 5

Notes.net: Generating sequential numbers in replicated applications "Iris Today" webzine at http://www.notes.net

As the owner of the order tracking application, I decided to allow
immediate number assignment within Notes and trust users not to hack the
counter. So, the database's ACL is set to grant Author access and the
[ordercreators] role to all Default users, and the OrderCounter setting has
included the [ordercreators] role in its Authors field.

Three paths to the core features
The two core functions, AutoNumberGet and AutoNumberCstr, should be
usable by any application without customization. Even so, the
application-specific work involved in loading settings and handling error
conditions is significant enough that a separate set of partly reusable
(customizable) functions are also needed. The sample database uses two
interface functions, ANNumberDoc and ANNumberDocs, in a script library
named slANCustomized. These functions process single requests and
batch requests, respectively, and pass them along to a private function
named SetNumber. SetNumber handles all interactions with the core
AutoNumbering functions.

This approach of separating a set of functionality into generic elements
and application-specific interfaces is a good technique for making code
more modular and, consequently, more reusable.

As this diagram of function calls shows, there are three paths for
requesting a sequential number. Let's examine each path.

© Copyright 2002 Iris Associates, Inc. 6

Notes.net: Generating sequential numbers in replicated applications "Iris Today" webzine at http://www.notes.net

To support order submission from a Web client, the sample order form
references an agent in its WebQuerySave event. This event executes
when a Web user submits the form.

@Command([ToolsRunMacro]; "agtSaveFrmANSampleCall")

Use "slANCustomized"
Sub Initialize 'agtSaveFrmANSampleCall

'Called by frmANSampleCall on web QuerySave
Dim s As New NotesSession, doc As NotesDocument
Dim varTemp As Variant
On Error Goto tagErrorHandler
Set doc = s.DocumentContext
Call ANNumberDoc (doc)
varTemp = doc.GetItemValue(C_AN_NUMBER_FIELD)
varTemp = Cstr(varTemp(0))
If (varTemp <> "") Then

Print "<p>Order Processed. Your order number is " +
varTemp + ".</p>"

Else
Print "<p>Order Processed." _
+ " Your order number will be emailed to you.</p>"
'(The email functionality is not included in this sample database.)

End If
tagEnd:

Exit Sub
tagErrorHandler:

Print "<p>Error " + Cstr(Err) + ": " + Error$ + "</p>"
Resume tagEnd

© Copyright 2002 Iris Associates, Inc. 7

Notes.net: Generating sequential numbers in replicated applications "Iris Today" webzine at http://www.notes.net

End Sub 'agtSaveFrmANSampleCall

This agent consists of little more than a function call wrapped in an error
handler. The actual assignment of the sequential number is handled by the
ANNumberDoc routine, which will be explained later.

The second path is direct numbering from the Notes client. There is no
"submit" event in the Notes client that is equivalent to the WebQuerySave
event. Instead, Notes applications commonly use the QuerySave and
QueryClose events in combination to detect form submission. The sample
order form uses this approach, waiting until the user has both saved and
closed before proceeding to request a number:

Use "slANCustomized"
Dim bWasSaved As Integer
Sub Postopen(Source As Notesuidocument)

bWasSaved = False
End Sub
Sub Querysave(Source As Notesuidocument, Continue As Variant)

bWasSaved = True
End Sub
Sub Queryclose(Source As Notesuidocument, Continue As Variant)

Dim doc As NotesDocument, iTemp As Long
If bWasSaved Then

Set doc = source.Document
Call ANNumberDoc (doc)

End If
End Sub

The third path applies to all orders submitted on noncentral servers. They
eventually replicate to the central server and are handled in batches by the
scheduled agent, agtschANAutoNumbering. This agent does nothing more
than call the ANNumberDocs routine, which will be explained later.

Use "slANCustomized"
Sub Initialize 'agtschANAutoNumbering

Dim s As New NotesSession, db As NotesDatabase
Dim dc As NotesDocumentCollection
Set db = s.CurrentDatabase
Set dc = db.UnprocessedDocuments
Call ANNumberDocs (dc)

End Sub 'agtschANAutoNumbering

Interfacing with the three paths
One good way of interfacing the three possible execution paths with the
core AutoNumbering functions is to create one interface for processing
individual documents and one for processing multiple documents. In the
sample database, the ANNumberDoc routine supports direct numbering
from the Notes and Web clients, and the ANNumberDocs routine supports
batch numbering from the scheduled agent.

The ANNumberDoc routine first determines the central server and the
number of desired digits, and makes sure that a counter document exists.
If the order document in question has not yet been numbered, it requests a
new number from SetNumber. (The SetNumber routine will be explained
later.)

Private Const C_AN_NUMBER_FIELD = "fDocNumber"

Public Sub ANNumberDoc (doc As NotesDocument)
'Assigns an AutoNumber to a doc if it's on the main server.
'Called by the document's QueryClose or Web QuerySave event.

© Copyright 2002 Iris Associates, Inc. 8

Notes.net: Generating sequential numbers in replicated applications "Iris Today" webzine at http://www.notes.net

Dim varTemp As Variant
Dim strANServer As String, iANDigits As Integer

'Initialize
strANServer = GetServer
iANDigits = GetDigits
Call CheckCounter

If Not (doc Is Nothing) Then

varTemp = doc.GetItemValue (C_AN_NUMBER_FIELD)
If (varTemp(0) = "") Then

'This doc has not been assigned a number yet. Attempt to do
so.
If SetNumber (doc, strANServer, iANDigits) Then

'Success
Call doc.save (False, False)

Else
'Failure
'If desired, log an error at this point

End If
Else

'The doc has already been numbered. Ignore it.
'Why was this routine called in the first place?
' If desired, log a warning message at this point.

End If
End If

End Sub 'ANNumberDoc

Private Sub CheckCounter
'Checks for the counter doc and tries to create it if necessary
Dim s As New NotesSession, db As NotesDatabase
Dim docTemp As NotesDocument, vwSettings As NotesView
Set db = s.CurrentDatabase
Set vwSettings = db.GetView (C_AN_SET_VIEW)
Set docTemp = _

vwSettings.GetDocumentByKey (C_AN_SETKEY_CTR)
If docTemp Is Nothing Then

'The counter doc was not found. Create it.
Set docTemp = db.CreateDocument
docTemp.Form = C_AN_SET_FORM
docTemp.fValue = "1" 'Start numbering at 1
Call docTemp.save (False, False)

End If
End Sub 'CheckCounter

The ANNumberDocs routine is nearly identical to ANNumberDoc, except
that it's called by an agent and processes multiple order documents. It
expects the agent to pass in a collection of all order documents that are
new or modified since the last time the agent ran. From that collection of
orders, it only tries to get numbers for the ones whose fDocNumber fields
are empty. Since the same documents shouldn't be processed over and
over, ANNumberDocs calls the NotesSession.UpdateProcessedDoc
method for each document as it looks at it.

Since both ANNumberDoc and ANNumberDocs call SetNumber, it's the
only routine that has to interface with the core script library,
slANAutoNumbering. This makes it easy to consolidate any error handling
code needed by the application. Other than error handling, all this routine
does is get a number from AutoNumberGet and convert it to a string using
AutoNumberCstr.

Private Function SetNumber (doc As NotesDocument, strANServer As

© Copyright 2002 Iris Associates, Inc. 9

Notes.net: Generating sequential numbers in replicated applications "Iris Today" webzine at http://www.notes.net

String, iANDigits As Integer) As Integer
Dim varTemp As Variant
Dim iANAttempt As Long, bReturn As Integer

bReturn = False

iANAttempt = AutoNumberGet(C_AN_SET_VIEW,
C_AN_SETKEY_CTR, C_AN_SET_FIELD, strANServer, True)
If iANAttempt >= 0 Then

'Success
bReturn = True
varTemp = AutoNumberCstr(iANAttempt, iANDigits)
Call doc.ReplaceItemValue (C_AN_NUMBER_FIELD, varTemp)

Elseif iANAttempt = C_AN_WRONG_SERVER Then
'Not really an problem. The number will be assigned later
Print "Delay: An auto-number could not be assigned yet" _
+ " because this is not the central server."

Elseif iANAttempt = C_AN_NO_COUNTER Then
Print "Error: An auto-number could not be assigned" _
+ " because the auto-number counter was not found."

Elseif iANAttempt = C_AN_NO_ACCESS Then
'Not really an problem. The number will be assigned later
Print "Delay: An auto-number could not be assigned yet" _
+ " because you do not have access to update the counter."

Elseif iANAttempt = C_AN_SAVE_CONFLICT Then
Print "Error: An auto-number could not be assigned" _
+ " because the counter is unavailable."

Else
Print "Error #" + Cstr(iANAttempt) _
+ " occurred. An auto-number could not be assigned."

End If

SetNumber = bReturn
End Function 'SetNumber

Of course, print statements are only helpful to the Notes client, so you may
want to customize SetNumber to respond appropriately to each of the
three "clients." For example, it might make sense to add a ClientType
parameter, and then handle errors differently in each situation. Notes
users could see a MessageBox, Web users could see red HTML, and
errors caught during batch processing could be written to a log.

Beyond the AutoNumbering tool
The design of the AutoNumbering tool hinges on an essential principle of
replication: when designing a replicated application, you must ensure that
any given document will never (or very rarely) be edited on more than one
server, since this can cause replication conflicts. This principle applies
particularly well to applications that maintain strict sequential numbers, but
it applies in other situations as well.

Looking back on the design of the Setting form with replication in mind, I
see that so far I've only protected the counter setting from replication
conflicts generated by the application itself. I haven't done anything to
protect any of the settings from conflicts generated by roaming application
administrators. So, one good enhancement might be to designate a central
server and have the Setting form's QuerySave event prevent anyone from
modifying a setting on a different server. Another solution might be to have
the user interface transparently send administrators to the central
database whenever they try to open the Settings view. But the consequent
performance hit might be unacceptable, depending on the organization's
WAN connection speeds between the affected servers.

Applied in a slightly different direction, this principle of replication could be

© Copyright 2002 Iris Associates, Inc. 10

Notes.net: Generating sequential numbers in replicated applications "Iris Today" webzine at http://www.notes.net

used to relax the restrictions of the AutoNumbering tool. If your application
doesn't require strictly sequential unique numbers across all servers, but
you want something a little more readable than Notes/Domino's built-in
@Unique function, you could have each server maintain its own count
sequence. The body of the SetNumber function could be modified to use
the current server's counter setting and append the server's name to each
generated number. This would result in numbers like 0002_Paris and
0002_Indianapolis.

A more practical example of split counters might be a feature for tracking
Web site usage statistics. It would make sense to count each server's hits
separately in order to identify servers that are overloaded or underused.

Clearly, there are many scenarios in which replication can impact a
Notes/Domino application's settings and counters. We have not exhausted
all the possibilities, but keeping the principles of replication and sound
design firmly in mind can go a long way toward keeping any distributed
application in one piece.

ABOUT JONATHAN COOMBS
Jonathan is a software developer for Joseph Graves Associates, Inc. in
Indianapolis. JGA is a full-service consulting firm that delivers quality IT services
and customized e-commerce, Internet, and document management software
solutions (www.jgraves.com). Jonathan's professional interests include software
reuse, Lotus Notes/Domino and Java technologies, and computational linguistics.
He can be reached at jcoombs@jgraves.com.

© Copyright 2002 Iris Associates, Inc. 11

