

by
David
DeJean

Level: Intermediate
Works with: Designer 5.0
Updated: 01/02/2001

More and more, being a Notes developer has to do with the development
tools you use, rather than the client software your application runs in. The
Web browser has taken a place beside the Notes client, and applications
originally created for Notes clients must be reworked for browsers.

Release 5 of Domino Designer has made it much easier to develop NSF
applications that work well on the Web. And by now there's a significant
body of experience with the new features and functions of Release 5—and
with the strengths and weaknesses of browsers as a development target.

This article provides a framework for analyzing your Notes application in
preparation for redeploying it as a Web application. It then examines the
different elements of the application and offers tips and techniques for
making your applications shine on the Web.

This article assumes an in-depth understanding of designing applications
using Domino Designer as well as knowledge of LotusScript and JavaScript.

Understanding the differences
Moving a Notes application to the Web is not a simple matter of adding
some HTML code to forms and views. The division of labor in a Notes
application—what the Domino server does and what the Notes client
does—is very different from the architecture of a browser-based application.
This is because the capabilities of a Notes client are very different from a
Web browser, and the protocols the browser and server use to
communicate are very different as well.

Release 5 uses JavaScript and Java to translate Notes client functionality to
the browser with fuller fidelity, so that Web users can interact with action
bars, Rich Text, views, and other Notes features in familiar ways. But there
is still no Web functionality equivalent to the Notes Document Object Model
(DOM) and Remote Procedure Call (RPC) protocol. A Notes client can send
instructions to the server to perform a task and receive back results that are
refreshed within the current open form or document. This kind of interaction
is nonexistent between a browser and server. All a browser can do is send a
request to a server, and all a server can do is send a complete page to a
browser.

Limitations of the Web browser and the browser/server architecture are the
basis for most of the problems you must solve as you consider whether the
functionality of your application can be delivered in a browser at all, and if
so, how you might do it. Beyond functionality, there are other issues, as
well—performance of both the client and server, security and access, and
ease of use, for example.

Getting ready to make the move
Before you can begin reworking an application for the Web, you need to
examine what you currently have and what you really need. There are three
parts to completing a good analysis of the application.

Re-evaluate basic assumptions

© Copyright 2000 Iris Associates, Inc. 1

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

Your review of the application should begin by being as specific as possible
about the desired result, and then work its way backwards. Start by
rethinking the who-what-where of your application in its new context:

Who will the users of your application be on the Web? Will they be the l
same people who use it now in a Notes client? A completely new and
different set of users? Or some of both? Will the application run only
on the Web, or will it serve a mix of Web and Notes users?

What will browser users do with the application? Will they need all the l
functionality of the Notes version or only part of it? Will Web
deployment change the level of activity in the application, with
resulting impact on server load?

Where will the Web users be? Will your application be accessible on l
a corporate intranet, or is the goal to deliver it across the Web itself?
What access levels will users need, and are those appropriate for a
Web application?

Exercise the application
With the answers to these questions in mind, you can begin to analyze your
application. Start by accessing your Notes application in a browser.
Navigate through it as completely as possible. Create and save new
documents using the forms if you can. Look at the results and note errors.
Then go back and compare the application in the two major
browsers—exercise the application in the versions of Internet Explorer and
Netscape Navigator you would expect your users to use, and note
differences between the two. During this hands-on evaluation, you'll begin to
spot problems and issues as well as discover some changes that will
improve the application in general.

Review the application piece-by-piece
Now you can begin looking at the application piece-by-functional-piece to
see:

Whether the piece needs to work on the Webl
Whether it can work on the Webl
How it would work on the Webl

Keep those points in mind as you consider each category:
Formsl
Does each form look acceptable in the browser? Do graphics display
properly, fields and field labels align? Are there differences between
the browsers? Could problems be solved by creating separate forms
or subforms for Notes and Web users? Do the forms contain
LotusScript that must be replaced with JavaScript for the browser?
Are existing agent actions available on the Web? Do you need to
rewrite back-end agents to process query strings or change them to
scheduled agents?

Viewsl
Does each view work on the Web? Do all columns display? Can you
select documents, or do you need to provide additional code to create
HTML links? Are all the actions your application requires available?

Data acquisitionl

Where does the data come from, and how does it get into your
application? Is it entered by the users? Is it drawn from other
applications or from back-end data sources? Is it environmental data
like user names, document IDs, and server and database names?

User interface and graphicsl
Does the application's user interface and graphic design meet user
expectations for a Web application? Does the application's existing
navigation work in a browser, or do you need to add navigational
choices to compensate for the loss of Notes client functionality? Does
it need anchors on the Web that it didn't need in Notes—a home

© Copyright 2000 Iris Associates, Inc. 2

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

page, section pages, help pages?

Access and security issuesl
How will you balance user access against system security? Will your
application require users to authenticate with the Domino server?
What level of access will they require? If your application will run both
in a Notes client and a browser, does the security need to be different
for the different clients?

If you've considered these questions carefully, you'll have gone a long way
toward mapping out what needs to be done to take your Notes application to
the Web.

Tips and techniques for forms
Trying out your forms in a browser may be a frustrating experience at first,
because you are likely to see error messages rather than anything familiar.
If that happens, make a copy of the form and remove fields, formulas, and
scripted events from it until the form displays in the browser. Then begin
adding them back in, checking to see that each one works in a browser and
taking note of those that don't.

There are many parts of a form that might not work in a browser. For
example, "Allow values not in list" for keyword fields aren't supported by
browsers. (There are workarounds. For example, the Iris Today article "
Webifying an existing Notes application," includes an example of how
you can let a browser user add a keyword to a multi-value field.)

Check your application for @functions and @commands that don't work in a
browser. Those @functions that don't work fall into three major categories:

They work only in the Notes client interface. There are no browser l
counterparts to @DialogBox, @Picklist, and @Prompt, for example.
And several advanced mail-handling functions are unique to the Notes
client, such as @MailSend and @IsDocBeingMailed.

The much simpler structure of Web views doesn't support many l
functions, including @DocChildren, @DocLevel, @DocNumber,
@IsCategory, or @Responses.

Many features associated with Notes access, preferences, and the l
workstation environment don't carry over to a browser—@Certificate,
@IsAgentEnabled, @MailEncryptSavedPreference, and
@UserPrivileges, for example.

Most @commands are associated with controlling the Notes client interface,
so they don't work in Web applications. The handful that do work on the
Web work hard, though, because they're used often.
@Command([FileSave]) and @Command([FileCloseWindow]), for example
are used frequently together to simulate a Submit button.

You can check to see whether @formulas and properties of other
programming constructs work for the Web by looking through the topics
listed in the "Overview of features to avoid using in Web applications" topic
in Domino 5 Designer Help.

Multiple solutions for multiple clients
As you diagnose and fix problems, you will likely find you need as many
solutions as the number of client types you are supporting: if your
application is intended to run in both a Notes client and a browser, you may
need to code one way for Notes, another way for Internet Explorer, and still
another for Netscape Navigator. There are many ways to do this using
multiple forms or subforms, selection formulas, and hide-whens that identify
the user's client and serve up the appropriate code for it.

In formulas, you can use @ClientType to identify the user's client as "Notes"

© Copyright 2000 Iris Associates, Inc. 3

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

or "Web." In cases where you need to code around differences between the
two major browsers, you can use @BrowserInfo to help you determine what
the user is running.

The extent of the differences will affect your solution as well. You may be
able to resolve problems with different versions of fields or formulas that are
specific to the clients. If you need to duplicate several fields, you may find it
easier to put them on subforms, or create two versions of the same form.
Performance may be a deciding factor: computing a single hide-when
formula to display one of two forms is more efficient than computing 30
hide-whens to display variant fields within a single form.

Hiding fields
If you can solve a problem with two versions of a field formula, one that
works in Notes and the other that works on the Web, then include both in
the form and use the "Hide from Notes/Hide from Web browsers" selection
in the Field properties box to display one or the other:

If you're using the same form for both Notes clients and browsers, the "Hide
from Notes/Hide from Web browsers" attribute on an object's properties can
be very useful. But don't forget that hidden has a different meaning for each
client. In Notes, hidden fields are still present in the document and can be
used in scripted calculations. Fields hidden from Web browsers, on the
other hand, are cut out of the document by Domino before the page is
served to the browser. The field contents are not available to be used by
JavaScript.

Tip: If you want to make fields invisible in a browser, but keep their contents
available to JavaScript, don't use the "Hide from Notes/Hide from Web
browsers" and don't put "type=hidden" into the fields' HTML Body Attributes
objects. Make sure that:

Their hide-when properties are set correctly for the Notes clientl
"Use JavaScript when generating pages" is set in the database l
properties
"Generate HTML for all fields" is selected in the form's propertiesl

Domino will generate the appropriate <type=hidden> tags in the HTML
page:

<input type="hidden" name="fieldname" value="fieldcontents">

Remember that field names and values treated this way are not secure.
They can still be seen by any user who clicks on the browser's "View Page

© Copyright 2000 Iris Associates, Inc. 4

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

Source" function.

Remember, too, that not all fields can be passed to a browser this way—the
password field, for example, "$Updatedby," "$HtmlHead," and any objects
that contain NULL characters (which includes users' public keys) because
NULLs can't be expressed in HTML.

Use subforms
Subforms can be an easy way to create forms that work both in a Notes
client and a browser. Add a computed subform and set its hide-when
properties so that it displays properly. The following formula calls one of two
computed subforms named NS and IE that include browser-specific code by
using the CGI variable for browser type in @BrowserInfo:

@If(@BrowserInfo("BrowserType")="Netscape";"NS";"IE")

Search for @BrowserInfo in Domino 5 Designer Help to see the entire list
of properties accessible using this function.

In R5, each subform has its own JS Header, so you can selectively include
JavaScript as well as other data types in your forms by using computed
subforms.

Remember that all subforms open simultaneously with the main form. You
can't display a computed subform on the basis of calculations after the page
opens.

Use duplicate forms for the Web and Notes
"Hide from Notes/Hide from Web browsers" will also work for entire forms.
Create two versions of the form—one for use in the Notes client, one for the
Web—and give them different names but the same alias. Set their
hide-when attributes so that one is hidden from Notes clients and the other
from Web browsers. Use the alias to open the form, and Domino will open
the correct form for the user's client.

LotusScript or JavaScript?
The amount and type of LotusScript in your application may have a major
influence on how easily you can migrate it to a browser.

If your application uses LotusScript primarily in the client for processing data
as it is entered and saved—to validate the contents of fields or to massage
the data's format—you may be able to do the same thing in a browser with
JavaScript. If your LotusScript is contained mostly in agents that execute on
the server, it may work well for both Notes and Web versions of your
application.

In the R5 Notes client, many form, field, and button events can be scripted
in either JavaScript or LotusScript (or, to be sure, @formulas). Depending
on how your application uses scripted events, this may mean that you can
convert some of your scripts to JavaScript and use the same form for both
Notes and Web clients. There are differences in the capabilities, however.
JavaScript in the Notes client has access only to the data in the currently
open form—it lacks the access to front-end and back-end Domino Objects
of LotusScript. Your application may work best if you write LotusScript for
execution in the Notes client and JavaScript for browsers, and use
hide-whens or separate forms to keep the execution straight.

Pages or forms?
The page is a low-impact alternative to a form or document for displaying
static information, or for carrying embedded controls for outlines, navigators,
views, or folders to the browser. The Domino server performs many fewer
calculations when it opens a page than it must do when it opens a form or
document, so there is a performance benefit. Pages are saved as database

© Copyright 2000 Iris Associates, Inc. 5

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

resources and can be referenced in outlines, included in framesets, and
used as the application's start page. Pages cannot include fields, but they
can include computed text.

Pages require a lower level of access permission than forms—users with
Reader access can see pages, while forms require Author access. This
difference can make it easier to allow unauthenticated users to view your
application and navigate through it without creating the potential for abuse,
because common navigation constructions (combining a navigator and a
view, for example) that previously had to be embedded in forms can now be
embedded in pages.

Another way to reduce the performance hit of opening a form when all you
want to do is to display a Web page is to put all the HTML code for the page
into a field named HTML. When Domino finds an HTML field on a form, it
sends the contents to the browser without performing form checking or
calculations. You can also use HTML fields to get large volumes of HTML
into Domino databases. Use a form with an HTML field (it can be either text
or Rich Text). Copy and paste the HTML code, save the document, and edit
it to fix links or path information. The HTML field can be either computed or
editable. Use a computed field if you want to compose a single page that
can't be edited by users later. Use an editable field if you're using the form to
create many documents holding HTML pages.

Replace missing Notes dialog boxes
You should consider designing forms for your application to replace error
messages and help dialog boxes that are missing on the Web. Particularly if
you require users to authenticate in order to use your application, you
should create a $$ReturnAuthenticationFailure form to inform users that
authentication failed and give them links they can use to navigate back to
familiar territory in the application.

Create your form and save it with the name $$ReturnAuthenticationFailure.
In order to make this form available for public access, you must do two
things. First, you must set the Default role to read public documents. You do
this in the application's Access Control List:

Second, set the form's security properties to make it available to public
users by choosing the last item on the Security tab:

© Copyright 2000 Iris Associates, Inc. 6

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

There are four reserved form names that can be used to create customized
error messages for browser users: $$ReturnAuthenticationFailure,
$$ReturnAuthorizationFailure, $$ReturnDocumentDeleted, and
$$ReturnGeneralError. For more about these fields and how to use them,
see "Displaying a customized error message" in Domino 5 Designer Help.

Agents and actions
Part of the process of architecting your application is deciding what needs to
be done by JavaScript in the browser and what must be done by agents on
the server. On the server side, you can run agents from WebQueryOpen
and WebQuerySave events. Agents can be run from the Web by
@Command([ToolsRunMacro]) or @URLOpen formulas.

By default, Web agents run under the identity of the agent author (the
person who saved the agent). To run agents under the identity of the Web
user, open the Agent properties box, click the Design tab, and select "Run
Agent as Web user" in the For Web Access section:

© Copyright 2000 Iris Associates, Inc. 7

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

This option can provide more security, because when a Web user tries to
run an agent with this property set, Domino prompts the user for name and
password and checks this against the invoker’s rights in the database ACL.

You can reference a URL or generate an HTML page from within an agent
by using Print statements. This form of redirection doesn't work from the
WebQueryOpen event, but from a WebQueryClose event, you can use it to
deliver a personalized confirmation message to the user or to display the
results of the agent execution.

Browser users don't have a counterpart to the Notes client's menus, so you
must provide them with whatever actions they need to perform in your
application. The R5 action bar applet allows you to do this within a
consistent UI. To create an action bar, in Designer, open the page, form, or
view where the action bar will appear. Choose Design - Page/Form/View
Properties. In the properties box, change to Action Bar properties and select
"Display Using Java Applet," as shown in this screen:

Set the Action properties for each of the actions that should appear on the
action bar so that they are included in the bar in the proper order, and if you

© Copyright 2000 Iris Associates, Inc. 8

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

want, so that they have an icon:

With the applet, Web users can see the same action icons that appear in
the Notes client. They can scroll across the action bar if it is wider than the
screen. Actions that have drop-down menus in Notes appear as a second
row of smaller buttons when the user clicks the main action.

Tips and techniques for views
The default display of a view in a browser is functional, but not very exciting,
as this example shows:

Domino renders the major features of the view faithfully. Users can collapse
and expand categorized views, and navigation is provided to move the user

© Copyright 2000 Iris Associates, Inc. 9

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

to previous and next pages if the view is a long one. There is a link to bring
up a search box.

This out-of-the-box interface doesn't have any of the graphical appeal of a
well-designed Web application, and it doesn't provide some of the functions
most frequently used in Notes applications—the ability for a user to select
multiple documents, for example.

Customize views with HTML and JavaScript
Fortunately, views can be customized to help make them more Web-like
and more functional. The most basic improvement is to embed a view in a
page and write some HTML code. Here's the same view embedded in a
page:

The page lets you add text and graphics, and even a background image file.
The generic navigation graphics and links are gone, as well, and you can
replace them with your own, or put the page in a frameset and pair it with a
navigator or an outline to provide navigation.

The view displayed above has been further customized. The twisties—those
graphics that indicate a category can be expanded or collapsed—have been
removed, and the contents of the right-hand column have been made into
hyperlinks by selecting "Show values in this column as links" on the
Advanced tab of the Column properties box:

You can change the color of the twisties, or make them disappear
completely from individual embedded views by writing a JavaScript function

© Copyright 2000 Iris Associates, Inc. 10

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

called "imagereplace" into the form that carries the embedded view. To
recolor the twisties, create two GIF files, OPEN.gif and CLOSE.gif, and save
them in your application as Image Resources. Copy the JavaScript for the
imagereplace function into the JS Header object:

function imagereplace()
{
for(i=0; i<document.images.length ; i++)
{
if(document.images[i].src.indexOf('expand.gif') != -1)
{
document.images[i].src=src =
'/DATABASE.nsf/OPEN.gif?OpenImageResource'
} //end if

if(document.images[i].src.indexOf('collapse.gif') != -1)
{
document.images[i].src= src =
'/DATABASE.nsf/CLOSE.gif?OpenImageResource'
} //end if
} // end for

}

And finally, in the page's onload JavaScript event enter "imagereplace()" to
execute the imagereplace function when the page is opened in the user's
browser.

To remove the twisties, make a single small transparent GIF file and change
the imagereplace code to replace the collapse.gif and expand.gif files with
your file. This leaves the twistie functionality in place, but makes it invisible.

Use the view applet
The view applet, new in R5, gives browser users many of the features of
views in the Notes client, including column resizing, collapse and expand,
multiple document selection, and vertical scrolling. To enable a view to use
the Java applet display in a browser, open the View properties box, and on
the Advanced tab, select "Use applet in a browser" in the For Web Access
section:

You are not limited to just one presentation of the view in your application. If
you embed the view in multiple forms or pages, you can set the properties of
that object to follow the view's setting and display using the Java applet in

© Copyright 2000 Iris Associates, Inc. 11

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

one instance or override it and display the view as HTML in another. To set
the embedded view's display properties, in Designer, open the page in
which the view is embedded, and then edit the Embedded View properties:

The view applet supports multiple document selection. This allows you to
move applications to the Web that require users to select a group of
documents for processing by an agent. If you embed a view in a page, you
can create hotspots or buttons that submit the list of selected document IDs
for processing by an agent on the server. The programming required to do
this depends on LiveConnect, a capability built into Internet Explorer,
Netscape Navigator, and the Notes client. LiveConnect allows JavaScript to
interact with components, such as Java applets, that are written in other
languages. The view applet, like the other Domino Java applets, has an API
that can be addressed by JavaScript in your application. For an example of
the code you would use to create a list of the UNIDs of documents selected
in the view applet and pass this list to a server agent, see Getting a handle
to documents selected in a view applet, one of the JavaScript lessons
from BinaryTree Inc. on the Lotus Technology Learning Center.

(There are HTML solutions to selecting multiple documents, too. See the Iris
Today article "Combining forms and views for friendlier Web
applications (Part 2)" for an ingenious implementation of checkboxes or list
boxes in views.)

Create an action bar
If your application uses cascading menus for actions, you'll want to enable
the action bar applet in the Web view or page. This applet puts your
application's actions into a row of buttons across the top of the HTML page,
as shown in the screen below. If there are submenus of actions, the applet
displays them as a row of smaller buttons when a top-level choice is clicked.
See the Agents and actions section under "Tips and techniques for forms"
above for more about enabling the action bar applet.

© Copyright 2000 Iris Associates, Inc. 12

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

Tips and techniques for data acquisition
Web browsers impose limitations on all but the most basic kind of
fill-in-the-blank data collection from users. Data types are restricted, and
things that Notes developers and users take for granted, like Rich Text and
file uploads, require much more attention.

Release 5 adds many new features to make data acquisition in a browser
work more like a Notes client. If you have a Rich Text field in a form, you can
specify that when that form is edited from the Web, a Java editor applet be
called to support some of the familiar Rich Text formatting conventions.

To enable a field for the Java editor applet, set its Web Access property to
"Display Using Java Applet:"

Many of the things Notes users use Rich Text fields for, like pasting in
graphics or uploading files, are not supported by the applet—there is a
separate file upload control you must include in your form if that's something
you want to allow users to do. To insert a file upload control into a form,

© Copyright 2000 Iris Associates, Inc. 13

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

choose Create - Embedded Element - File Upload Control. The control will
appear in the form like this:

Intermediate results
One of the most profound differences between applications developed for
Notes clients and those developed for a Web browser is the use of
intermediate results. The interaction between Web browsers and a Web
server is severely limited: a browser requests a URL from the server, and
the server returns the requested URL to the browser. The requested URL
may be an HTML page, or it may be a server action. This is how HTML
forms work: the client sends a query string that includes variable names and
values and a URL on the server that identifies a script that the server
executes to process the contents of the query string.

Notes forms, in contrast, are much more flexible and allow for intermediate
results. Your application may use an @DbLookup formula to let the user
choose a value from a list, then use that value in other computations in the
open form. This is not possible in a Web browser. You can approximate the
same result by having the user select the document containing the value,
and then passing this document ID to a server agent that looks up the value,
performs the computations, and writes a new HTML page, which is sent to
the user.

CGI variables
Notes makes a great deal of environmental data easily available to the
developer. If you want to identify the user you include @UserName in a
formula. Other information about the current application environment is
equally easy to access using @Author, @DbName, and @ServerName.
Similar information is available to applications on the Web, but you must
take an extra step to acquire it.

Every request from a Web browser is accompanied by a set of CGI
(Common Gateway Interface) variables that pass information about the
user's environment, including such data as the user's name, the browser
type, and the user's Internet Protocol (IP) address. Domino treats CGI
variable names as reserved names—when it encounters a field on a form
with the name of a CGI variable, Domino copies the field value from the CGI
environment and places it in the field. In order to use a CGI variable, you
must have a named field for it on your form.

One very basic use for this information is to smooth over a difference
between the Notes client and a browser. In Notes, @DbName returns not
only the name of the current database, but the name of its server, as well.
On the Web, however, @DbName returns only the name of the database. If
you're trying to compute a URL, you have to find the server name
somewhere else. The place to look is a CGI variable called, appropriately,
server_name. An easy shortcut is to add a field to your form called
server_name.

This can be especially useful if you build and test your application on a
development server, and then move it to a production server. Using CGI

© Copyright 2000 Iris Associates, Inc. 14

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

variables eliminates much of the hardwiring of server and database names
that must be corrected by hand to put an application into production.

The complete list of data available as CGI variables is a long one. It is
available in Domino 5 Designer Help under the heading "Table of CGI
Variables."

Tips and techniques for the user interface and
graphics
As you move your application from the Notes environment to the Web, you
will face two challenges in the user interface design. On the one hand, the
browser's lack of counterparts for many Notes features and functions may
force you to lower your expectations for ease of use, if not actual reduced
functionality. But on the other hand, you have to meet Web users'
expectations for graphical design and visual impact if you want your
application to be taken seriously. This will probably require work on your
application's graphics and navigation, in particular.

The good news is that Release 5 supports most of the advanced features of
current browsers, so the more HTML and JavaScript you know, the more
Web-like your application can be. If you've been impressed by Web sites
with layered interfaces built on Dynamic HTML, for example, see the Iris
Today article "Teach Domino New Web Tricks with DHTML," which shows
you how to use DHTML to create a layered interface in a Domino
application.

But you aren't required to know DHTML to turn a Notes application into a
good Web application. You just have to master some basics and use them
intelligently—and take advantage of Release 5's ability to provide some
visual appeal.

Use tables to control placement
Tables are the best way to control the placement of elements in a Web
page. If you have any experience with HTML, you'll appreciate the problems
of getting elements such as fields, text, and graphics to line up properly.
Part of translating your application to a browser will probably involve putting
these elements into tables on your forms to make alignment simpler.

One problem with using tables to control page layout occurs if you place
large Rich Text fields in table cells that are deeper than a single printed
page. If you print the Web page, cell content is truncated at the end of the
first page. One solution is to create a separate form for printing the
document without tables and giving the user a button in the table to switch to
the form without tables.

Tip: Be careful about moving back and forth between versions of Domino
Designer. Once you have edited a form containing a table in R5 Designer,
don't re-edit it in an earlier Designer version or the table can be corrupted.

Validate user input data
If your application does sophisticated input validation using LotusScript,
much of it can probably be transformed into JavaScript to work in a browser
as long as it uses data already in the document. If validation depends on
external data—lookups into other documents or databases, or the
acquisition of document UNIDs, for example—you will have to move such
actions to server agents.

Simple validation is still easy to do with @functions and @commands. Here
is an example that checks a form to make sure that five fields have been
filled in: first and last names, a category, an item name, and a description.
This screen shows the top part of the form open in Designer:

© Copyright 2000 Iris Associates, Inc. 15

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

The field named CheckEmployee, in red above, is computed for display.
You should give it its own name as a value and set it to hide when
"CheckEmployee=""". Each data entry field has a similar "check" field.

The work of validation is done by the Submit button formula:

FIELD CheckEmployee := @If(First = "" | Last = "";"<font face=arial size=4
color=ff0000>You must enter your first and last name
before
submitting this document";"");
FIELD CheckCategory := @If(Category = "";"<font face=arial size=4
color=ff0000>You must choose a category
for this item";"");
FIELD CheckItem := @If(First = "" | Last = "";"<font face=arial size=4
color=ff0000>You must enter a a name
for this item";"");
FIELD CheckDescription := @If(First = "" | Last = "";"<font face=arial size=4
color=ff0000>You must enter a description
for this item";"");

NoProblems :=
CheckEmployee+CheckCategory+CheckItem+CheckDescription;

@If(NoProblems = "";
@Do(@Command([FileSave]);
@Command([FileCloseWindow]));
@Command([ViewRefreshFields]))

If any of the data fields is empty, its check field is assigned an error
message. A temporary variable, NoProblems, aggregates the check fields. If
there are no empty fields, NoProblems has no length and the @Do
command saves the file and closes the window. If any field is empty, the
@Do instead executes the @Command([ViewRefreshFields]) condition,
which makes the error messages visible:

© Copyright 2000 Iris Associates, Inc. 16

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

This minimal validation lacks the elegance of scripting solutions that allow
you to place focus on the field that lacks input, but it does allow you to serve
the needs of the users for feedback—and yields better, more complete data
with little effort on your part.

Graphics improvements in R5
Release 5 makes major improvements in the handling of graphics. One of
the most important is native support for the two most widely used Web file
formats, JPG and GIF, as Image Resources. When you import a file into a
Domino R5 application, it is stored in its format rather than converted to a
proprietary format (which is what happened in previous versions). You no
longer need to worry about color palettes and unexpected color shifts.
However, this doesn't work if you paste the image, only if you import it. For
more information on graphics, see the Iris Today article "The Graphic Truth
about Notes."

The image resource is a great improvement for managing graphics within
your application. Use the image resource to save an image just once in an
application and then use it on many forms or pages. Image resources
replicate with the application so that even if there are multiple copies of your
application in service, as long as they all replicate, you can update icons or
logos in all their occurrences by replacing just one copy.

Easy rollover buttons
The image resource is a good example of an easy way to use Release 5 to
make your application more Web-like. Domino can automatically turn
properly prepared image resource files into rollover buttons that change
state when you mouse over them. Use a graphics editor to assemble the
various states of the image into a single graphic with one pixel of separation
between the images:

Domino will recognize up to four states for the graphic:
The image in the first position on the left is treated as the normal l
image.
Second position is the image displayed on mouseover.l
Third position is the image when selected.l
Fourth position is the image when clicked.l

This order is fixed, but you can use only two or three states by inserting an
image multiple times to fill the array. The example above uses the same
image for the mouseover and selected states, for example, so that the
clicked state can display a different image. If you want only normal and
mouseover, you can leave the last two positions empty.

© Copyright 2000 Iris Associates, Inc. 17

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

Next, import your multi-state graphic into your application as an image
resource, and indicate how many images it contains in its properties box:

Domino automatically uses this information to make the image display
properly both in the Notes client and on the Web. (The entry for "Images
down" is used for multiple sizes of bookmark icons. For more on image
resources, see Domino 5 Designer Help.)

Tip: If you add images to forms or pages by writing HTML image tags, you
can improve performance by including the graphic's dimensions:

""

(Domino does this automatically for image resources.) You can also make
your application more user-friendly by adding alternate text that appears
when an image can't or won't be displayed. In HTML, write it into the image
tag:

""

For image resources, add text in the Alternate Text field on the Information
tab of the Picture properties box.

Navigation
Web applications typically need more elaborate navigation built into them
than Notes applications because browsers lack the built-in navigation
provided by the Notes menus. Release 5 adds several features that you can
use.

The problem with any Web application is that you need to separate its
navigation as much as possible from individual documents so that when its
navigational structure changes, as it inevitably will, the changes can be
made by modifying as few documents as possible. On pure HTTP servers,
this can be done with server-side includes or .ASP pages to combine a
panel of navigational links into documents as they are served to users. In a
Domino application, a subform can often perform the same role. Or you may
embed an outline in a page or form.

Outlines are a new Release 5 feature that you can use to create flexible,
high-level navigation across the areas of an application or a Web site.
Outline entries can be programmed with commands such as hide-whens so
that a single outline can appear differently in different areas of the
application. An outline's appearance can also be tailored in each instance of
its use. A Java applet is available to make outlines work in a browser as
they do in a Notes client. For more information, see the Iris Today article, "
Domino Designer R5: The Outline Designer."

© Copyright 2000 Iris Associates, Inc. 18

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

Frames
Framesets are often used to place a navigation pane next to content.
Domino Designer R5 makes framesets easier to create with a graphical
frameset designer. You can size your frames by dragging them, or set frame
attributes such as size, scrolling, border colors and width, and frame
spacing in the Frame properties box.

You can specify the contents of each frame in advance, or have it computed
when the frameset is opened. The following Frame properties box shows
part of a formula that computes the name of the navigator to display in the
frame. Formulas can control frame content based on client type or CGI
variables including user name, so you can write a display formula based on
user roles.

You can set a frameset to launch automatically when a database, form, or
page opens. For more on framesets, see the Iris Today article "Domino
Designer R5: Framesets."

Framesets and navigators are an easy way to develop consistent navigation
for a site, but remember that users often find framesets confusing because it
is often hard to reverse direction and navigate back along a path you have
followed in a frameset. Use them with care.

Tips and techniques about access and security
Setting access to your application is often a thorny problem. On the one
hand, allowing anonymous access is easiest. Forcing users to authenticate
may become an administration problem, because every authenticating user
must have a record in the server's Domino Directory. But on the other hand,
users must have at least Author access to create new documents in a
Domino application. Many Notes administrators view setting the Anonymous
role to Author access as an invitation for abuse. Their solution is to set
Anonymous access for most Notes databases to "no access," set the
Default role to Author, and force users to authenticate.

If your application is intended for corporate users on an intranet, this isn't a
problem—most corporate Notes applications are probably intended for use
by authenticated users. But many Web applications are intended to permit
anonymous, unauthenticated access.

Restricting Anonymous users to "no access" has some problems in addition
to the administrative burden. One of them is the need to create some Public
Access forms that are visible to all users. We saw this in the discussion of
the $$ReturnAuthenticationFailure form. If you require Web users to
authenticate but their authentication fails, they won't see an error message
unless you create one and set it for Public Access.

If your application is aimed at giving Web users read-only access to

© Copyright 2000 Iris Associates, Inc. 19

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

information, it can work well with Anonymous access set to Reader. Just
remember that this may limit users' ability not only to create, edit, and delete
documents, but to run agents that create, edit, and delete documents.

If you would like to limit users to one level of access from the Web, while
allowing them their customary access from a Notes client, you can use the
"Maximum Internet name & password" setting on the Advanced tab of the
ACL. It's a drop-down list, as shown in the screen below:

If you set the access level for your application to Reader here, for example,
all Web users will be restricted to Reader access, even though they might
have Author or Editor access when they access the application from a Notes
client.

For maximum security, use Readers fields
The best way to restrict access to documents in your application is to place
restrictions in the form that creates the documents. You can do this in two
ways—by editing the settings on the Security tab of the Form properties box,
or by placing a Readers field on the form itself. Enter the names of
individuals, groups, and roles that should be able to see the documents, and
nobody else will be able to open the documents or even see them listed in
views.

The choice of whether to use property settings or fields is up to you. Both
have advantages. Values entered in a Readers field are combined with the
properties list. It is easier to use the properties setting as you create or edit
the form, because the selection dialog box does a lookup in the Domino
Directory. If you use a Readers field, you can compute its value when the
document is created, and use Domino administration to modify or update
some or all of the Readers fields in a database at once.

Another option is to limit what's displayed in the views in your application.
This works only with embedded views; you can restrict the displayed
contents of the view to a single category by opening the page or form that
holds the embedded view in Designer and selecting "Show single category"
on the Objects tab of the Programmers pane, as this screen detail shows:

© Copyright 2000 Iris Associates, Inc. 20

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

Then in the Script area of the Programmers pane, enter the name of the
category or write a selection formula that evaluates to a category name. You
can use this technique to display documents only to their authors or only to
members of specified groups. For example, the following formula displays
the appropriate category to users who are members of one of four
groups—Admin, Sales, HR, or IS:

@If(@Contains(@UserRoles;"Admin");"Admin";
@If(@Contains(@UserRoles;"Sales");"Sales";
@If(@Contains(@UserRoles;"HR");"HR";
@If(@Contains(@UserRoles;"IS");"IS";
""))))

One final fillip: if the formula evaluates to an asterisk, all categories are
displayed. This means that you can show the entire view to some users and
restrict it for others, or by using @ClientType, you can create a view that will
display only a single category in a browser, but its entire contents in a Notes
client:

@If(@ClientType = "Web";"Newsflash";"*")

Help is at hand
Most of the challenges you face in converting Notes applications to Web
applications involve finding ways to make things Notes does work in a
browser. If you're a Notes developer who's just beginning to work on
applications for the Web, places to start looking for answers are close at
hand:

The Domino 5 Designer Help is a great source, not only of l
information but of examples that can show you how things are done.

You can check out the Iris Sandbox, a library of downloadable l
applications and code samples on Notes.net.

Another good source of tutorials and code is the Lotus Technology l

Learning Center. The Learning Center provides self-paced tutorials
that emphasize hands-on work. For example, the Killer Web Apps 2
offering from BinaryTree includes content on CSS, DHTML, HTML,
JavaScript, XML, and more.

Don't forget the Notes/Domino Gold Release Forum on Notes.net. l

© Copyright 2000 Iris Associates, Inc. 21

Notes.net: Taking your Domino applications to the Web "Iris Today" webzine at http://www.notes.net

Many of the tips and ideas in this article first appeared there.
Generally, if you can't find the answer in the forum, all you have to do
is ask the question.

And Iris Today has a number of relevant articles; check out the l
archives or perform a full-text search for the topic that interests you. If
you're just moving to Release 5 from a previous version of Notes,
Domino Designer R5 Technical Overview and Domino R5
Technical Overview, and the articles they are linked to, are good
places to start.

 For more on R5 best practices, you can download the Lotus Notes l

and Domino Application Development Best Practices Guide.

This article, along with these resources, should take you a long way toward
the successful migration of your Notes application to the Web.

© Copyright 2000 Iris Associates, Inc. 22

