

by Amy E. Smith
(with Charlie Kaufman, Chuck
Bassett, and Mary Ellen Zurko)

Level: Intermediate
Works with: Domino 5.0
Updated: 12/01/99

Inside this article:
How ECLs work

Propagating ECLs in the workplace

ECL changes for 5.0.2

Signature policies

Related links:
Domino 5 Administration Help

Recommendations for deploying
tighter ECLs

5.0.2 Release Notes

Sidebar: ECL risk levels

Get the PDF:

Chances are, you've never thought much about ECLs, mainly because
you've never had to. Now, as a result of changes in 5.0.2, ECLs are going to
be making themselves known to system administrators and their users. This
is a good thing, because it presents a valuable opportunity for administrators
to think about the role that ECLs play in their workplace, and to implement
(or in many cases, re-deploy) them accordingly.

The Execution Control List (ECL) is a potentially powerful part of the system
administrator's security toolbox, yet it is frequently under-utilized at best, and
overlooked at worst. Waiting quietly in the background on every client
workstation, like a watchdog, the ECL is designed to protect user
workstations against code from unknown or suspect sources. The ECL
determines whether the signer of the code is allowed to have its code run on
a given workstation, and defines the extent to which the code has access to
various workstation functions and is gated by the workstation security ECL.

In this article, you will learn how ECLs work, about their importance in user
workstation security, and how you, as a system administrator, can deploy
and manage them effectively in your workplace.

For the purposes of this article, the term "active content" is used to refer to
items that are verified and screened by the ECL. This includes formulas,
scripts, agents, design elements in databases and templates, documents
with stored forms, actions, buttons, hot spots, as well as malicious code
(such as viruses and Trojan horses) -- in short, anything that can be
executed on a user workstation.

How ECLs work
ECLs list trusted authors of active content. In Notes, database design
elements, formulas, scripts, and other active content are signed with the ID
of the user who created it or last modified it. In order for active content to be
trusted, and thereby allowed to run on the workstation, the signer must be
listed in the ECL.

© Copyright 1999 Iris Associates, Inc. 1

Staying alert with Execution Control Lists "Iris Today" webzine at http://www.notes.net

For each signer listed in the ECL, workstation security settings can be
enabled for access to protected operations, such as the ability to access the
workstation file system or external programs. For a description of the
workstation security options, see the Workstation access options sidebar.
(Note: Although this article concentrates specifically on workstation security
ECLs, descriptions of Java and JavaScript security ECL options are also
provided in the sidebar.)

Note the list of signers in the ECL dialog shown above. You can see that the
"No Signature" entry (highlighted) does not have any workstation security
options enabled.

When active content runs on a user workstation and attempts a potentially
harmful operation, several things happen. Notes verifies the code is signed,
looks up the signer of the code in the client's ECL, and then checks the
signer's ECL settings to determine whether the action is allowed. If the signer
of the code is listed in the client's ECL and the appropriate setting is enabled,
the code is executed.

If the active content attempts an action that has not been enabled for its
particular signer in the ECL, or if the signer is not listed in the ECL, an
Execution Security Alert (ESA) is generated. The ESA specifies the
attempted action, the item's signer, and the ECL access option that is not
allowed.

© Copyright 1999 Iris Associates, Inc. 2

Staying alert with Execution Control Lists "Iris Today" webzine at http://www.notes.net

When users see an ESA, they have three options:
Abort -- Cancel the execution of the action in question.l

Execute Once -- Perform the action, but doing so does not modify the l
ECL configuration. If the same action is attempted by the same signer in
the future, the ESA appears again.
Trust Signer - Performs the action for the signer and modifies the ECL l
configuration, adding permission for the signer to execute the action
anytime.

The ESA shown above was generated on a workstation that uses the ECL
options shown earlier. The active content is this case is a mail message that
includes a button that perfoms a Mail Send. Note that while the active
content is signed, the signer is not trusted in the ECL so the action is
disallowed. (The "No Signature" entry in the ECL signer list covers both
unsigned code and code that is signed by an identity or organization that
can't be authenticated.). If the user were to click "Trust Signer," the signer
would be added to the ECL, and the action would be enabled for that signer.

Trusting unsigned content is extremely risky, and creates a security hole that
allows potentially harmful code, malicious or otherwise, to access user
workstations. Trusting signed active content from other organizations is also
risky, as merely having a signature doesn't make an item trusted. Before
adding an active content author to your ECL, you must decide if you trust the
author has created safe code.

Propagating ECLs in the workplace
There are two kinds of ECLs: the Administration ECL, which resides in the
Domino Directory (names.nsf), and the workstation ECL, which is stored in
the workstation's Desktop file (desktop.dsk or desktop5.dsk). In most cases,
the Administration ECL is the template for all workstation ECLs. During the
installation of the first server in the domain, the Administration ECL is
created with default settings. Subsequently, whenever a new client is set up,
a copy of the Administration ECL is created locally on the user workstation.
The current Notes user ID is also added to the local ECL, with all access
allowed. For example, when John Doe's Notes client is being set up, John
Doe is automatically added to the client ECL signer list. If the home server is
unavailable at setup time, such as when a user is disconnected, a default
ECL is created.

ECLs are not static. They are designed to be reconfigured to meet changing
security requirements. Administration ECLs can be edited through the
Domino Administrator client. There are several ways to update user ECLs,
by:

Editing the user ECL dialog.l
Clicking Trust Signer (although this is not always desirable; see below).l
Refreshing with an updated version of the Administration ECL. (For a l

© Copyright 1999 Iris Associates, Inc. 3

Staying alert with Execution Control Lists "Iris Today" webzine at http://www.notes.net

description of this procedure, see Recommendations for deploying
tighter ECLs in the 5.0.2 release notes.

ECL changes for 5.0.2
Until release 5.0.2 of Notes/Domino, ECLs and signatures were provided as
tools for administrators and users to implement as security policy dictated. In
release 5.0.2, IBM/Lotus began concentrating efforts on fine-tuning ECLs to
provide the optimum balance between security and usability.

ECL default settings
A major change in 5.0.2 is the change in the ECL default settings.
Previously, default ECL settings favored a more open configuration. They
enabled all access options for the following signatures:

Default -- Trusts code signed with any signaturel

No Signature - Trusts unsigned or unauthenticated codel

(UserName) - Trusts code signed with the user's ID (user ID that was l
added when the client ECL was first set up)
Lotus Notes Template Development - All Notes templates are signed l
with this ID, and this signature is trusted by default

If administrators failed to supply a Administration ECL with different settings,
users would not get any ESAs; however, this meant that workstation security
was, for all intents and purposes, nonexistent.

For release 5.0.2, the default settings are now "tight" instead of open,
meaning that the access options for signatures not known to be trustworthy
have been disabled. The new default ECL settings do not allow access to
protected operations for unsigned or untrusted formulas and code.
Consequently, secure ECL defaults are implemented for new domain and
client installations, as well as for domains that never modified their original
default Administration ECL.

Note that the secure ECL defaults are applied automatically only during
setup of new client ECLs. To implement the secure defaults for existing
(pre-5.0.2) clients, Administration ECLs should be updated with the secure
settings and the @RefreshECL function can be used to "push" updated
Administration ECLs to existing clients.

When using the new default ECLs in 5.0.2, users will be seeing ESAs with
far greater frequency than ever before. Both active content that is signed and
trustworthy, and that with untrusted or no signatures, will produce warnings
unless remedial action is taken, either by updating the Administration ECL or
clicking "Trust Signer."

It's often tempting for users to just click "Trust Signer" every time they get an
ESA. The problem with this is that, as the ECL is modified, it becomes more
and more open and allows greater access to code that attempts to execute
on the user workstation. This can inadvertently create security risk,
especially if unsigned code is trusted. This problem can be offset through
careful ECL planning. Signing all custom databases and templates with IDs
included in the Administration ECL, and then refreshing user ECLs, will
tighten security and minimize ESAs (and user annoyance).

Administrators can also reset the ECL to disable all workstation protection (in
effect, restore the pre-5.0.2 defaults) before deploying end-user ECLs during
client setup. This means that users would stop getting ESAs, as restoring the
default settings has the same effect as allowing users to always "Trust
Signer." Users can also edit their ECLs, once the client has been setup, to
restore the pre-5.0.2 default settings. In both cases, however, this leaves
user workstations open to potential security problems.

© Copyright 1999 Iris Associates, Inc. 4

Staying alert with Execution Control Lists "Iris Today" webzine at http://www.notes.net

Execution Security Alert
There was a small user interface change made to the Execution Security
Alert for 5.0.2, as well. Prior to 5.0.2, if users opted to Trust Signer, they
were also prompted to trust a signer's entire organization. This option was
removed in 5.0.2, because while it might be necessary to trust a signer in
order to run something on the workstation, it is not necessary to enable the
same options for the signer's entire organization.

Signing design elements
Lastly, for 5.0.2, most design elements that have executable code associated
with them (for example, buttons, fields, formulas) can be signed and have
their signatures checked at time of execution (for example, when a button on
a form is clicked). This enhancement, which remedies several reported bugs,
makes sure that an organization running a tight ship can associate code with
any of the many options available in Designer, and not worry about users
needing to leave a hole in their protection by granting "no signature" any
access rights.

See the 5.0.2 release notes for specific information about these
enhancements.

Signature policies: proactive ECL management
The changes in 5.0.2 present an opportunity for administrators to rethink
their ECL strategies and to be proactive in managing and deploying ECLs in
their organization. An excellent way to do this is through the use of signature
policies. A signature policy is essentially a system for administrators to plan
for, and configure in the ECL, those signatures that are trusted to sign active
content, those that are not, and to what extent the trusted signatures can
access protected workstation operations. Not only does a signature policy
promote sound security practices, but ideally, it minimizes or negates the
need for users to deal with ECLs.

Implementing a signature policy in your organization requires some time
investment on the part of both the administrator and the organization; there
is maintenance overhead for such tasks as centralizing signing, keeping
administration and workstations ECLs updated, and so on. However, the
benefits to be realized are significant.

First, it is good information systems practice. ECLs protect user workstations
from problems caused by active content, malicious or otherwise. It's possible
to be exposed to code that was written with no malicious intent, but can still
do damage because of coding errors. Setting up safeguards through a
signature policy, such as only trusting certain users to sign/write code,
reduces your exposure to both malicious and buggy code, and minimizes
down time and support calls.

Second, it is good administrative practice. Having a signature policy in place
reduces the chances of making mistakes (such as trusting an unsigned
formula), compared to when signatures are trusted ad hoc, such as when
users react to ESAs. In addition, the existence of a signature policy is
frequently a good vehicle for setting down end-user security policy and
practices.

Lastly, it is good business practice. A well-implemented signature policy
works in tandem with corporate security practices to protect corporate
information assets. It encourages a conscious approach to enabling access
to those assets.

There are two strategies to think about when considering a signature policy:
Managing and deploying user ECLsl
Trusting active contentl

© Copyright 1999 Iris Associates, Inc. 5

Staying alert with Execution Control Lists "Iris Today" webzine at http://www.notes.net

Managing user ECLs
There are several options for managing and deploying user ECLs that range
from minimal to maximum security, and may or may not require the
implementation of a signature policy. Whether and how you decide to
implement a signature policy in your organization depends on several
factors; namely, the time and effort required for maintaining it, size and
sophistication of the user community, nature of the business, and the extent
to which users communicate externally.

One way to manage ECLs is by not managing them. This is the least secure
method of all. User ECLs are set to pre-5.0.2 defaults, so that everyone,
even unidentified signers, is trusted. User impact is minimal, since, as a
result, users will never get ESAs. So, while you as an administrator will
rarely be bothered by someone who needs to have their ECL updated, there
is a greater risk for damage by malicious code. This kind of scenario is
appropriate in organizations with small user communities that have physical
security and no connections to the outside world.

The next, more secure option for managing ECLs is the "ad hoc trusting"
method, where who to trust is determined by examining what ESAs arise in
regular use, and users are instructed by their system administrator about
who to trust. As these decisions are made, the Administration ECL is
updated, and user ECLs are refreshed accordingly. (See the 5.0.2 release
notes for detailed instructions about ad hoc trusting).

The next couple of ECL management strategies require the use of signature
policies. The first, which manages to incorporate a high degree of security
and flexibility, relies on a set of policies and procedures. It includes
guidelines for who is be trusted and who is not. There are procedures for
keeping the Administration ECL up-to-date, and refreshing user ECLs
regularly as the Administration ECL is updated. Users are given clear
instructions for reporting ECL warnings, and there are firm policies about
never trusting signers ad hoc, or clicking "execute once." Consequently,
when ESAs do occur, it is either because of a mistake -- for instance,
someone distributed code using a non-approved ID, or a database design
element happens to be unsigned -- or because it is an actual security
problem.

The most stringent signature policy is that which does not allow users to
modify their ECLs. This means that they cannot edit their own workstation
ECL, nor can they run unsigned or disallowed code. Should they get an ESA,
the only option is to abort the operation. Administrators can set this option in
the Administration ECL, by disabling the "Allow users to modify" option.
When the Administration ECL is copied to user workstations, the option
disallows users from editing their ECLs. This type of signature policy works
best for companies in which users run a small, tightly controlled set of
applications.

Trusting active content
An important aspect of a signature policy is defining a methodology for
trusting signers, which takes into account signed content that comes from
both within and outside the organization.

For active content that comes from external sources (for example, third-party
Notes applications), and that will be deployed in an organization,
administrators need to make sure that all signers associated with this code
are trusted. You have these options:

Add the signatures provided by the software vendor to your list of l
trusted signatures on your Administration ECL.
Sign all new databases with an approved internal ID, using the Admin l
Tools - Sign utility for signing databases (see the topic "Signing a
Template or Database" in Domino 5 Administration Help). This utility

© Copyright 1999 Iris Associates, Inc. 6

Staying alert with Execution Control Lists "Iris Today" webzine at http://www.notes.net

operates on production databases; it takes a database template and
signs all the design elements with a new signature.

For active content that is created internally, we offer the following
approaches:

Create special signing IDs, which exist for the sole intent of signing l
databases, templates, and code for ECL purposes, and give the IDs
rights to run restricted agents and be included in Administration ECL.
The IDs exist apart from admin IDs, and usage should be limited to
those individuals authorized to sign content.

In this scenario, it is extremely important to control access to the signing
IDs. When authorized individuals leave the organization, their signing ID
should be disabled. Similarly, new individuals who are given signing
authority would get a new signing ID.
Have a separate organizational unit within a organization for users who l
must sign templates and applications, and then create an ID in that
organizational unit for each of those users (for example */Acme
Template Developers/Acme). Users who create templates and
applications should only use the IDs issued through the new
organizational unit when signing their templates and applications. The
Administration ECL can then be configured to trust any user in that
special organizational unit.

Note: You should avoid wildcarding on trusted signatures (such as
*/JoesCompany) for an entire organization. Wildcarding in this instance
means that all users within that organization are trusted. This is not
recommended, primarily because most users don't, or don't need to, create
active content; moreover, having such a policy in place makes any stolen ID
potentially harmful.

See the ECL access option risk levels sidebar for two examples of ECL
workstation security settings that show the levels of risk associated with each
action for two signature policy scenarios - one for a very stringent signature
policy (virtually no ESAs), and one for a less conservative policy.

Conclusion
ECLs are only effective if they are implemented properly. While the changes
in 5.0.2 serve as gentle reminders about the presence and purpose of ECLs,
it is up to Domino administrators to manage them effectively. This involves
careful planning for who and what is trusted; thorough implementation of
updated client ECLs; and ongoing maintenance of the Administration ECL, to
reflect changes in trusted signers.

ABOUT AMY
Amy Smith is a principal user assistance writer for Lotus. She writes and maintains
functional specs for Domino and Notes. She also is a member of the Notes UA Web team.
Amy became interested in ECLs after getting one too many Execution Security Alerts. She
practices good ECL hygiene and never trusts unsigned active content.

ABOUT CHARLIE
Charlie Kaufman is a security architect for Notes and Domino. He got his start in security
breaking into systems using Trojan horses, but has spent the last 25 years on the other
side trying to keep the bad guys out. He sees protecting users who don't care about
security from active content as his toughest (and most fun!) challenge ever.

ABOUT CHUCK
Chuck Bassett is a software engineer working on Lotus Notes security at Iris. When he's
not writing code he enjoys steep days in deep powder and long rides in the trees.

ABOUT MARY ELLEN
Mary Ellen Zurko is a security architect at Iris. For 13 years she has been working on
putting security and usability together. She sees ECLs as an exciting challenge in this area.

© Copyright 1999 Iris Associates, Inc. 7

Staying alert with Execution Control Lists "Iris Today" webzine at http://www.notes.net

SPECIAL THANKS
Special thanks to Katherine Spanbauer, of Lotus Professional Services, for her help with
this article.

About this Site | Feedback
Lotus Home | IBM Home | Iris Home

Copyright 1999 Iris Associates Inc.

© Copyright 1999 Iris Associates, Inc. 8

Staying alert with Execution Control Lists (ECL risk levels sidebar) "Iris Today" webzine at http://www.notes.net

[back to "Staying alert with Execution Control Lists "]

ECL access option risk levels
There are tradeoffs between user convenience (fewer execution security alerts) and tighter security. The tables
below categorize the level of risk associated with each workstation security action for two signature policy
scenarios.

Very stringent signature policy
Here is an example of a conservative ECL policy, which ensures fairly strong security with higher likelihood of
ECL alerts.

Action Risk Default No
Signature

Lotus Notes
Template
Development/L
otus Notes

*/Organization */OU/Organizat
ion
(where *
corresponds
to trusted
users)

Access to the
file system

High Do not allow Do not allow Allow Do not allow Do not allow

Access to the
current
database*

High Do not allow Do not allow Allow Do not allow Allow

Access to
environment
variables

Low Do not allow Do not allow Allow Do not allow Allow

Access to
non-Notes data

Medium Do not allow Do not allow Allow Do not allow Allow

Access to
external code
(such as Notes
LSX or API
programs)

High Do not allow Do not allow Allow Do not allow Do not allow

Access to
external
programs
(such as
non-Notes
programs)

High Do not allow Do not allow Allow Do not allow Do not allow

Ability to send
mail

High Do not allow Do not allow Allow Do not allow Allow

Ability to read
other
databases

Medium Do not allow Do not allow Allow Do not allow Allow

© Copyright 1999 Iris Associates, Inc. 1

Staying alert with Execution Control Lists (ECL risk levels sidebar) "Iris Today" webzine at http://www.notes.net

Ability to
modify other
databases

Medium
-High

Do not allow Do not allow Allow Do not allow Allow

Ability to export
data

Medium Do not allow Do not allow Allow Do not allow Allow

Access to
Workstation
Security ECL

High Do not allow Do not allow Allow Do not allow Allow

*Access to current database includes both read and write access. This can be risky in the context of a user's mail
file. Use caution when assigning this privilege to users. However, if a consistent signing policy does not exist, not
allowing access to current database will generate a large number of Execution Security Alerts.

Less conservative signature policy
Here is an example of ECL that minimizes execution control alerts while mitigating only the most severe risks.

Action Risk Default No
Signature

Lotus Notes
Template
Development/
Lotus Notes

*/Organization */OU/Organiza
tion
(where OU
corresponds
to trusted
users)

Access to the
file system

High Do not allow Do not allow Allow Do not allow Do not allow

Access to the
current
database*

High Do not allow Do not allow Allow Allow* Allow*

Access to
environment
variables

Low Allow Do not allow Allow Allow Allow

Access to
non-Notes data

Medium Do not allow Do not allow Allow Allow Allow

Access to
external code
(such as Notes
LSX or API
programs)

High Do not allow Do not allow Allow Do not allow Allow

Access to
external
programs
(such as
non-Notes
programs)

High Do not allow Do not allow Allow Do not allow Allow

Ability to send
mail

High Do not allow Do not allow Allow Do not allow Allow

Ability to read
other
databases

Medium Allow Do not allow Allow Allow Allow

Ability to
modify other

Medium-
High

Do not allow Do not allow Allow Do not allow Allow

© Copyright 1999 Iris Associates, Inc. 2

Staying alert with Execution Control Lists (ECL risk levels sidebar) "Iris Today" webzine at http://www.notes.net

databases

Ability to export
data

Medium Do not allow Do not allow Allow Do not allow Allow

Access to
Workstation
Security ECL

High Do not allow Do not allow Allow Do not allow Allow

*Access to current database includes both read and write access. This can be risky in the context of a user's mail
file. Use caution when assigning this privilege to users. However, if a consistent signing policy does not exist, not
allowing access to current database will generate an increased number of Execution Security Alerts.

About this Site | Feedback
Lotus Home | IBM Home | Iris Home

Copyright 1999 Iris Associates Inc.

© Copyright 1999 Iris Associates, Inc. 3

Staying alert with Execution Control Lists (Workstation Access Options sidebar) "Iris Today" webzine at http://www.notes.net

[back to "Staying alert with Execution Control Lists "]

Workstation access options
Choose from these options when setting up a workstation ECL:

Access option Allows formulas and code to

Access to the file system Attach, detach, read to, and write from workstation files

Access to current database Read and modify the current database

Access to environment variables Use the @SetEnvironment and @GetEnvironment variables and
LotusScript methods to access the NOTES.INI file

Access to non-Notes databases Use @DBLookup, @DBColumn, and @DBCommand to access
databases when the first parameter for these @functions is a
database driver of another application

Access to external code Run LotusScript classes and DLLs that are unknown to Notes

Access to external programs Access other applications, including activating any OLE object

Ability to send mail Use functions such as @MailSend to send mail

Ability to read other databases Read information in databases other than the current database

Ability to modify other databases Modify information in databases other than the current database

Ability to export data Print, copy to the clipboard, import, and export data

Access to Workstation Security ECL Modify the ECL

Java applet options
Note: Although this article concentrates specifically on workstation security ECLs, descriptions of Java and
JavaScript security ECL options are also provided here.

When a Java applet runs within Notes, certain security restrictions are imposed on that applet. This is sometimes
referred to as the "Java security sandbox". This security model protects against malicious code by determining
what operations an applet can perform and what system resources it can access. These restrictions can be
customized on a per-signature basis by enabling the checkboxes as described below.

Access option Allows the applet to

Access to file system Read and write files on the local file system.

Access to Notes Java classes Load and call the Domino back-end object classes.

Access to network addresses Bind to and accept connections on a privileged port (a port outside the
range 0 to 1024) and establish connections with other servers.

Printing Submit print jobs.

© Copyright 1999 Iris Associates, Inc. 1

Staying alert with Execution Control Lists (Workstation Access Options sidebar) "Iris Today" webzine at http://www.notes.net

Access to system properties Read system properties such as color settings and environment
variables.

Dialog and clipboard access Access to the system Clipboard and also determines whether the
"security banner" is displayed in top-level windows. The security banner
is a visual indication (usually a message like "Java Applet Window") that
this window was created by a Java applet. This is done to ensure that a
user does not inadvertently enter security-sensitive information into a
dialog masquerading as a password dialog, for example. Enabling this
checkbox causes the security banner not to be displayed.

Process-level access Create threads and threadgroups, fork and execute external processes,
load and link external libraries, access non-public members of classes
using Java core reflection, and access the AWT event queue.

JavaScript options
The JavaScript ECL options control security for JavaScript executing within the Notes client, either on a Notes
form or on a Web page rendered by the Notes browser. These options do not control JavaScript executed by
other browsers including the Microsoft Internet Explorer browser, even when embedded within the Notes client.
The read and write options (under the general categories "Allow Read Data Access From" and "Allow Write Data
Access To," respectively) control whether JavaScript code can read or modify JavaScript properties of the
Window object. The Window object is the top-level object in the JavaScript document object model. It has
properties that apply to the entire window. Securing access to the Window object secures access to other objects
on the page since the JavaScript program cannot access the objects lower in the object model without first
traversing the Window object.

You can control the security for these read and write options independently for three different classes of Window
objects:

Window object class Description

Source window Controls JavaScript access to the Window object on the same page as
the JavaScript code. Typically this is a very low security threat.
Selecting this option does not prevent JavaScript calls if the call is
made directly to the object on the source window. Doing so circumvents
the Window object; therefore this ECL option is not enforced.
The default is to allow read and write access.

Other window from same host Controls JavaScript access to the Window object on a different page
from the JavaScript code, but from a page using the same host. For
example, JavaScript code on a page on www.lotus.com can access the
Window object on another page on www.lotus.com. This allows two
pages to interact if they are within the same frameset. This is a slightly
higher security threat.
The default is to allow read and write access.

Other window from different host This is similar to "Other window from same host," except it enables
access to the Window object on a different page within a frameset that
uses a different host. For example, JavaScript code on a page on
www.lotus.com can access the Window object on a page on any other
server. This is the highest security threat because of the possibility of
someone designing a frameset containing a page performing malicious
actions accessing data on another page in the same frameset that you
"trust," where you might type a password or some other sensitive
information.
The default is to not allow read and write access.

There are two additional ECL options that control whether JavaScript executing in the Notes client is authorized to
open a new Web page or Notes document.

The following options are available in the "Allow Open Access To" category:

© Copyright 1999 Iris Associates, Inc. 2

Staying alert with Execution Control Lists (Workstation Access Options sidebar) "Iris Today" webzine at http://www.notes.net

Option Description

URL on same host Controls access for opening a page or Notes
document on the same host as the JavaScript code.
The default is to allow open access.

URL on different host Controls access for opening a page or Notes
document on a different host as the JavaScript code.
The default is to not allow open access.

About this Site | Feedback
Lotus Home | IBM Home | Iris Home

Copyright 1999 Iris Associates Inc.

© Copyright 1999 Iris Associates, Inc. 3

