
Notes.net: Application settings tool: an alternative to profiles "Iris Today" webzine at http://www.notes.net

by
Jonathan
Coombs

Level: Intermediate
Works with: Designer 5.0
Updated: 07/02/2001

In the process of developing an application, you nearly always identify
certain system features that need to have configurable functionality. For
example, the application's owner may need to be able to modify the list of
options displayed in a combo-box on a form. Or the text of all
system-generated e-mails may need to be periodically updated to reflect
changes in corporate policy.

In some Notes environments, the developer of each application is
responsible for making changes directly to the production databases. In
such environments, you might be able to change an application's
configuration manually by making minor design changes. However, most
environments—and good development practices in general—dictate that
the production design should not be modified frivolously. In a typical
environment, you first complete a new release of the application on a
development server and then formally request that the Notes
administrators move it into production.

In general, then, design changes should be used only for bug fixes and
true enhancements, and configurable settings should be modifiable
through a "system configuration" or "application settings" interface. (Such
features are also referred to as control, keyword, or profile documents.) If
this interface can be made user-friendly and robust, you can give the
application owners the responsibility of maintaining some of these
settings. If this interface can also be made generic and reusable, it can
increase the system's flexibility and significantly reduce development time.

This article presents a reusable Application Settings tool in the context of
a fictitious order-tracking application and covers a few important
development standards that increase the tool's reusability. You can
download and examine the sample Simple Settings database discussed
in this article from the Iris Sandbox. Since the Application Settings tool
will support both the Notes and Web clients, the article also covers some
basic techniques for maintaining compatibility with both.

This article assumes an intermediate understanding of designing
Notes/Domino applications.

Design alternatives
The most typical example of an application settings interface is a single
profile document containing one field per setting. The instructions and
data type for each field are hard-coded into the profile form's design. For
example:

© Copyright 2001 Iris Associates, Inc. 1

Notes.net: Application settings tool: an alternative to profiles "Iris Today" webzine at http://www.notes.net

This approach has the advantage of being simple and centralized, and of
leveraging the Notes functions that provide quick access to profile
documents, such as @GetProfileField and
NotesDatabase.GetProfileDocument.

There are disadvantages, however, to using profile documents. The main
disadvantage is that they are hidden, making them difficult to find, delete,
or copy between databases (for example, from development into
production). It is also difficult to build an interface for viewing and
maintaining multiple profile documents. If all of an application's settings
have to be stored in a single document, it is hard to organize all of those
settings meaningfully on the document's form.

Because of these problems, I usually avoid using profile documents.
Instead, I store application settings in ordinary Notes documents tucked
away in an administrative view, using a generic form to create a separate
document for each setting.

This approach does have its disadvantages as well. It adds an additional
design element (the view) and uses indirect lookup functions (@DbLookup
and NotesView.GetDocumentByKey), which can negatively impact
performance in some cases. Even so, the ability to create and maintain
any number of settings is necessary when building a reusable Application
Settings tool, so I think this flexibility outweighs the disadvantages.

So what does a generic Setting form look like? The Setting form
presented in this article is very simple in concept. Since each setting is
stored as a separate document, the form essentially only needs two fields:
a text field to store the setting's unique name and a text field to store its
value. But why stop there? By adding a field for instructions, each setting
can be made to display a message explaining its purpose and use. Adding
an Authors field gives us the ability to assign specific settings to specific
administrators. Adding different types of value fields can make the user
interface support various data types in addition to simple text.

Notice that this approach is not tied to the design of any particular
application. It puts no restrictions on the number of settings an application
can have; the application could be designed to use a variable number of
settings, or even hierarchies of settings. Once the tool has been fully
developed and debugged on all clients, it can be used in a wide variety of

© Copyright 2001 Iris Associates, Inc. 2

Notes.net: Application settings tool: an alternative to profiles "Iris Today" webzine at http://www.notes.net

applications without modifying its design. If element-level design
inheritance is enabled, bug fixes and enhancements can be deployed from
a central template. (As with any reusable tool, delivery and maintenance
should be carefully planned. If you choose not to use design inheritance,
beware of creating a different flavor of the tool for each application. See
the Domino 5 Designer Help for more on design inheritance.)

A basic implementation
Let's start by looking at a basic implementation of the Application Settings
tool that is fully functional from both Notes and Web clients and that can
be easily upgraded to a more advanced tool. The Application Settings tool
consists of a form, a user view, and a hidden lookup view. These
elements, along with an Order form and view that demonstrate their use,
are included in the Simple Settings database (SettingsSimple.nsf)
available in the Iris Sandbox.

Before we examine how the Setting form and views of the Application
Settings tool itself are put together, here's an overview of how the tool
works within the sample order-tracking application. The sample Order
form, below, demonstrates the use of text and text list settings.

Although the instructions and radio button options could be built into this
form, the form will be more flexible if the application owners can control
them using Setting documents.

To store this Order form's instructions and option lists, the Application
Settings tool will need to store one text setting and two text list settings.
Each setting will be individually created with the Setting form and stored in
its own document. For example, the screen below shows a Setting
document for one of the text lists, the Approved field. (The Category field
on this form is there to help keep large numbers of settings organized.)

© Copyright 2001 Iris Associates, Inc. 3

Notes.net: Application settings tool: an alternative to profiles "Iris Today" webzine at http://www.notes.net

This basic version of the Setting form is easy to implement and makes
application settings available to both Notes clients and, in this case, Web
clients. Having a Web interface as well as a Notes interface may not be
necessary if your application administrators will access the application
only with Notes clients; but since we are developing a tool that can be
used in many different applications, it's a good idea for the tool to support
both clients.

As the Setting documents are created, they appear in the Settings view.
The screen below shows the Settings view with the Setting documents for
the Order form's settings. The Order form's fields can then use
@DBLookup commands to retrieve the settings from the Setting
documents. The syntax of these lookup commands is described later in
this article.

© Copyright 2001 Iris Associates, Inc. 4

Notes.net: Application settings tool: an alternative to profiles "Iris Today" webzine at http://www.notes.net

Setting form design standards
Before explaining the design of the Setting form, let's take a look at the
naming and design conventions it follows.

Near the top of the form is a collapsed section containing embedded
design documentation. I've included documentation in the form itself
because developers are most likely to see it there and because it goes
wherever the form goes. (Some additional documentation is provided
through REM statements in individual field formulas.)

Each field name is prefixed with an f, and also with a d if it is a display
field. This helps to distinguish it from the field names reserved by Notes
for special purposes (for example, Form, Server_Name, and SendTo).
Hidden fields are small (8 point) and gray, and usually have bold labels
next to them. (When unhiding several hidden fields for debugging
purposes, the labels make it easy to tell which is which.)

© Copyright 2001 Iris Associates, Inc. 5

Notes.net: Application settings tool: an alternative to profiles "Iris Today" webzine at http://www.notes.net

Another important consideration with any Web editing form is page
caching. Most users' browsers store recently accessed pages on the local
hard drive. This improves performance when browsing static pages, but it
can also prevent those users from seeing their most recent changes if
they edit, save, and reopen a document. To tell the browser to always
request a fresh page, you can set the form to "Automatically enable Edit
Mode," or use an HTML <META> tag (in the form's HTML Head Content
formula) to give the page a past expiration date:

"<META HTTP-EQUIV=\"Expires\" CONTENT=\"Mon, 06 Jan 1990
00:00:01 GMT\"></META>"

The Setting form
The basic version of the Setting form allows anyone with Editor access to
create, name, and categorize settings that can be stored as text or text list
values. It also provides an Instructions field for storing an explanation
along with each setting. Let's look more closely at each of these fields (as
shown in the figure above).

The hidden fDocType field always computes to "Setting" and is used by
the Settings views' selection formulas. (Using a custom field yields better
long-term flexibility than using the Form field.)

The Categories field does not have the f prefix because its name has
special meaning to Notes. Users can categorize individual Setting
documents by typing a category title into this field, or (in Notes) they can
categorize several documents at once by selecting Categorize from the
Actions menu. (Note that Categories fields should be set to allow multiple
values, since the Categorize feature returns a text list.)

The fName, fValue, and fInstructions fields are all single-value text fields,
so Domino automatically sends them to the Web client using HTML
<INPUT> tags. This is adequate for the short fName field, but the fValue
and fInstructions fields need to support multiple lines of text. So, the
fValue and fInstructions fields are only sent to the Web client when in read
mode. When editing from the Web, the fdValueWeb and
fdInstructionsWeb display fields are used instead. Their formulas generate
HTML <TEXTAREA> fields named fValue and fInstructions, respectively,
so these text areas' values are saved back into the proper Notes fields on
submit.

There are a few things to watch out for when using this technique. It
cannot be used if the form's "Generate HTML for all fields" property is
enabled, as this will generate duplicate field names on the page. Also, the
newline characters returned by the browser may not be interpreted
correctly by Notes. The ASCII characters 13 and 10 are used to indicate
carriage returns and line feeds, but they are not always used consistently.
In the browsers I've tested, a 13 followed by a 10 is equivalent to one
@NewLine in Notes, and then any individual 13 or 10 is also equivalent to
one @NewLine. Therefore, I added these translation formulas to the
fValue and fInstructions fields, respectively:

@ReplaceSubstring (fValue;
(@Char(13)+@Char(10)):@Char(13):@Char(10); @NewLine)

@ReplaceSubstring (fInstructions;
(@Char(13)+@Char(10)):@Char(13):@Char(10); @NewLine)

The next field, fValues, is a multi-valued text field set to display multiple
values on separate lines, so Domino automatically generates a
<TEXTAREA> field for it and handles any newline characters

© Copyright 2001 Iris Associates, Inc. 6

Notes.net: Application settings tool: an alternative to profiles "Iris Today" webzine at http://www.notes.net

appropriately. This field's text area, therefore, requires no special display
field or translation formula.

The hidden fValueString field stores each setting's value in an alternate
standard format. It first determines whether the setting's value was
entered into fValue or fValues, and then converts the value into a standard
string:

@If (fValue != ""; fValue; @Implode(fValues; @NewLine))

Finally, the hidden $$Return field tells Domino to display the Settings view
after the Web form has been submitted:

path := @ReplaceSubstring (@Subset(@DbName;-1); "\\"; "/");
"[/" + path + "/" + "vwSettings" + "]"

In addition to all these fields, the Setting form includes a standard set of
actions: Edit Mode, Read Mode, Save & Close, Cancel, and Delete. To
make the form layout look a little better from the Web, I also added a <P>
tag below the title as pass-thru HTML and used the fields' HTML attributes
to set their widths. You may wish to make other cosmetic changes as
well, but always keep in mind that the form should be as generic and
reusable as possible.

The views
The views (vwSettings and vwLookSettings) provide access to Setting
documents for viewing, editing, and code lookups. This functionality could
be combined into a single view, but instead I have created one user
interface view, the Settings view shown above, for viewing/editing and a
hidden view for code lookups, shown below. This is an extremely
important design standard because it allows you to freely rearrange your
user interface views to fit your users' needs without breaking any code
lookups.

The views are documented with REM statements in their selection
formulas, but let's take a quick look at them.

As mentioned before, both views select just those documents whose
fDocType field equals "Settings." The Settings view is a formatted,
categorized view that contains actions the user can select, while the
Lookup view is completely unformatted and displays only a unique key for

© Copyright 2001 Iris Associates, Inc. 7

Notes.net: Application settings tool: an alternative to profiles "Iris Today" webzine at http://www.notes.net

each document. It is designed to support LotusScript lookups and formula
lookups by field name. It does not have columns for fValue or fValues
because lookups made against column numbers tend to make the view
design less flexible (and the lookup code less readable). Still, if you find
your application requires faster lookups, it might be necessary to add
lookup columns.

Since each setting is uniquely identified by the combination of its category
and name, the lookup view defines its lookup key as the concatenation of
the two, separated by an asterisk (*). The Order form runs three lookups
against this hidden view, one for its Instructions field and one for each of
its radio button fields. Since the Instructions field needs the single text
value stored in the "Examples\01\Instructions" setting, its key is
"Examples\\01*Instructions" and it accesses the fValue field:

key := "Examples\\01*Instructions";
temp := @DbLookup("Notes":"NoCache"; ""; "vwLookSettings"; key;
"fValue");
@If(@IsError(temp); "Error: Unable to find the Setting document (" + key
+ ")"; temp)

The lookups for the two radio buttons' options are identical, except that
they have their own unique keys and retrieve their values from the fValues
field.

Creating dynamic setting structures
To demonstrate the flexibility gained by using a generic form and one
document per setting, the sample database also includes an Advanced
Order form. This form supports a variable number of settings stored in a
simple hierarchy.

The original Order form displayed all of its items in one long list. The
Advanced Order form provides the same items, but it breaks them down
into categories.

The list of categories is maintained in the "Examples\02\Items\Categories"

© Copyright 2001 Iris Associates, Inc. 8

Notes.net: Application settings tool: an alternative to profiles "Iris Today" webzine at http://www.notes.net

setting and displayed by the category field. Whenever its value changes,
this field refreshes the form, causing the item selection field to display the
list of items that correspond to that category. The lookup that returns this
list is very similar to the one used in the original Order form, except that it
uses the current category as part of its lookup key:

key := "Examples\\02\\Items*" + fItemCategory;
temp := @DbLookup("Notes":"NoCache"; ""; "vwLookSettings"; key;
"fValues");
@If(@IsError(temp); "Error: Unable to find the Setting document (" + key
+ ")"; temp)

To support this dynamic association of categories and items, I broke the
original Setting document ("Examples\01\Items") into multiple documents.
There are currently four categories, but the Order form will support any
number of categories without a design change, as long as each one
corresponds to a value in the "Examples\02\Items\Categories" setting.
Each category listed on the Advanced Order form has a corresponding
Setting document, as seen in the Settings view below.

Possible enhancements
This article has presented the basic structure of a reusable Application
Settings tool and a few examples of how it can be used with Notes and
Domino to support individual settings, a variable number of settings, or a
structured hierarchy of settings. The user interface for this tool is not
sophisticated, but it is usually adequate for applications that require little
maintenance and have well-trained administrators.

The most significant problem with the basic Setting form is its simple
interface. It does not directly support non-text data types, so dates,
names, and numbers must all be entered as unvalidated strings. It is also
somewhat confusing because it does not distinguish between developers
and application administrators. That is, everyone with Editor access has
full access to every setting, even though in most cases, the administrator
should only edit the Value or Value List field (but not both). A design that
gave full access only to developers would be safer. You can address
these and many other issues by enhancing the Application Settings tool.

These and many other issues can be addressed by enhancing the
Application Settings tool. I have begun this process by creating an
Advanced Setting form that supports multiple data types, applies user

© Copyright 2001 Iris Associates, Inc. 9

Notes.net: Application settings tool: an alternative to profiles "Iris Today" webzine at http://www.notes.net

roles, and improves the user interface. It also provides a script library to
simplify LotusScript lookups. This enhanced version of the Application
Settings tool, Advanced Settings sample database, is available from
the Iris Sandbox.

About Jonathan Coombs
Jonathan is a software developer for Joseph Graves Associates, Inc. in Indianapolis.
JGA is a full service consulting firm that delivers quality IT services and customized
e-commerce, Internet, and document management software solutions. Jonathan's
professional interests include software reuse, Lotus Notes and Domino technology, and
computational linguistics. He can be reached at jonathancoombs@bigfoot.com.

© Copyright 2001 Iris Associates, Inc. 10

