Thea Technical Resource for Lotus software

Lotus. Developer Domain LDD Today

Level: Intermediate

Works with: Lotus Domino Toolkit for WebSphere Studio
Updated: 02-Jun-2003

—_— ——— -}

Amazun Web Services
using the Lotus Domino
Toolkit for WebSphere Studio

If you've been following along with this article series, remember that in our firstLDD Today article, "Integrating
Amazon Web Services with your Notes databases," we described how to integrate Amazon Web Services with
a Domino application to query the Amazon.com search engine. In Part 2, we told you how to build the same
application with JavaServer Pages and a few other J2EE technologies. In Part 3 of this article series, we use the
Lotus Domino Toolkit for WebSphere Studio to create a Web application using the Domino database that we
created in Part 1 of this series. Applications created using the Lotus Domino Toolkit for WebSphere Studio run
on any J2EE subset server that supports JavaServer Pages (JSPs) and servlets, including WebSphere Express
and Apache Tomcat.

The Lotus Domino Toolkit for WebSphere Studio includes the Domino custom JSP tags for access to various
Domino objects; these tags integrate with WebSphere Studio. (The toolkit does not work with Eclipse, even
though WebSphere Studio is based on the Eclipse framework, because the toolkit uses some WebSphere
Studio features.) The integration with WebSphere Studio allows you to open a Domino database and drag and
drop Domino design elements into JSPs in WebSphere Studio; the integration automatically generates the
correct JSP custom tags, so you don't have to worry about getting the syntax correct. In this article, we show how
this integration lets you create a Web application that displays the Amazon.com books from the database we
loaded via Amazon Web Services and that lets you categorize documents as an administrator.

You can download code samples for this article from the Sandbox.

Application structure

As you discovered in Part 2 of this article series, "Integrating Amazon Web Services with JavaServer Pages,"
you have to program many of the "niceties" that Domino handles for you when Domino serves a database on the
Web, including view paging, logins, and document editing. You separate viewing from editing by dividing your
Web site into sections that are visible to all users and by creating a separate section that only administrators
can access so they can edit/delete documents (in our case, links to books on Amazon.com). Note that, because
the data is in a Domino database, you can save a significant chunk of development time by doing the editing in a
Lotus Notes client. However, this article shows how the administrator's section can be built using the Domino
custom JSP tags for completeness.

If you follow this article, you will also create an application using two security techniques that keep the
application portable: session variables and container-managed security (a.k.a., declarative security). The
session variable technique is the most portable because it requires very little from the J2EE server and, in fact,
is used in other Web development environments from Active Server Pages (ASPs) to Cold Fusion to PHP. When

© Copyright IBM

Lotus Developer Domain: Integrating Amazon Web Services using the Lotus Domino Toolkit for WebSphere Studio
www.lotus.com/Idd/today.nst

a user completes a login form, the user's authentication information is looked up and the user name and roles
are stored in the user's Web session on the server; if this session information does not exist, the user is not
logged in. One benefit of this technique when used with Domino is that you can look up a user's roles in the
Notes/Domino database the user is trying to access, instead of tying it to the J2EE Web application. The
negative of this technique is that a piece of code to check for a valid login must be included at the top of all
"secure" pages; if this is not done, any user can access that page.

Container-managed security, as implied by the name, is managed by the J2EE server on which your application
is run. In your Web application's web.xml file, you declare which roles are available for your application, which
URLs are secure, and which roles are required for the secured URLs. Management of users and roles is
handled in the J2EE server's administration tools. Because Notes/Domino databases are secured by Domino
security, even when a role is assigned to a user in the J2EE server, the user who can edit a Notes/Domino
document must have valid access rights to the database, so you have an extra layer of security when using
Domino custom JSP tags.

The JSPs needed for our Web application include:

JSP Description

login.jsp Login page for session variable security

doLogin.jsp Page that processes the actual login and returns the user to index.jsp
if successful or to login.jsp if unsuccessful

logoutjsp Logout page used to flush all session variables related to login

indexjsp Read-only view displaying all books in Added state for
non-administrative users

showBook.jsp View book page

checkLogin.jsp Included in all pages for session variable security; used in

container-managed security to load login information into the same
session variables as session variable security

admin/indexjsp Administrator view of books which allows deletion of books and
displaying books in each state

admin/editBook.jsp Edit book page for administrators only

Creating a Web project in WebSphere Studio

This section assumes that you already installed the Lotus Domino Toolkit for WebSphere Studio. You can
download the Beta version of the Lotus Domino Toolkit for WebSphere Studio from LDD.

Note: As of this writing, the Beta of the Lotus Domino Toolkit for WebSphere Studio includes Domino custom
JSP tags that do not fully work (specifically, the form/field tags) on J2EE servers besides WebSphere. It's
expected that this is a bug in the Beta instead of a hardcoded dependency on WebSphere given that Lotus is
promoting use of the Domino custom JSP tags on all J2EE servers.

After installing the toolkit, open WebSphere Studio and create a new Web project. Make sure you select the
Include Domino Custom Tags Library option in the Web Project features window. When you create the project,
the Domino Toolkit automatically configures your project with the tag library (TLD) files for the Domino custom
tags and adds the necessary Domino custom JSP tag JAR files to your project's classpath.

Creating a JSP

Now you are ready to create your first JavaServer Page. Create a new JSP file by choosing File - New. The New
JSP File dialog box opens. Check the location to make sure it's the correct one:

© Copyright IBM 2

Lotus Developer Domain: Integrating Amazon Web Services using the Lotus Domino Toolkit for WebSphere Studio
www.lotus.com/Idd/today.nst

Newapre

New ISP File :
Specify a name and location for the new J5F file.
Folder: | fAmazoriws/web Content Browse...
File Mame: | Indlex.jsp

Markup Language: [HTML =]
[Create as 5P Fragment

Model; {More =]
Description:

Generate 4 new blank 5P page.

L |2

Eesct::‘ Erish | Carvel

Click Next and select the Domino JSP custom tag libraries from the Select a Tag Library dialog box.

Note: You have to enter the prefix before you can select the checkbox; the prefix field is located after the
checkbox, which is a bit confusing. After doing this, click Next or Finish and use defaults for the rest of the page
options. WebSphere Studio generates a starter page that includes tags for initializing the page, a style sheet
reference, and tag library includes.

Now you can add a Domino view. First open the Domino database browser pane by choosing Window - Show
View - Other and selecting Domino. Click the new database menu item and enter the Domino server name (the
DIIOP task must be running on this Domino server), the user name to log in as, and the AmazonWS.nsf
database you created in Part 1 of this article series.

© Copyright IBM 3

Lotus Developer Domain: Integrating Amazon Web Services using the Lotus Domino Toolkit for WebSphere Studio
www.lotus.com/Idd/today.nst

Connecting...

Domino Database Connection &

L L R T e N L]

Internet Name of Domino Server | SipGate

User | Database User
Path [Amazoniws.nsf
Location | Database User@SlpGate/AmazonWs.nsf

el pea

Position the cursor before the </BODY> tag, then open the Domino database browser for the AmazonWsS.nsf
database. Find the Books\by Status view. Right-click the view and choose "Add form/view to Web Page" from the
menu. WebSphere Studio inserts the appropriate JSP tags to display the Domino view in your JSP. You can also
drag and drop the view onto the JSP, but be aware that the view is inserted wherever your cursor is, not where
you drop the view. This is what the result looks like:

- e

Carsagn | Source Fravier

You can now look at the results of this. Don't use the Preview tab in the JSP editor however. This only shows you
what the static HTML looks like and is fairly useless when you have live custom JSP tags on the page. Instead,
look in the project file hierarchy pane on the left, then right-click the JSP file and select Run On Server. Choose
the WebSphere Test Environment (this requires an extra 145 MB of memory, so you should have at least 768 MB
on your system for development or it will be slow). After you do this, you are rewarded with your first usage of the
Domino JSP custom tag library:

© Copyright IBM 4

Lotus Developer Domain: Integrating Amazon Web Services using the Lotus Domino Toolkit for WebSphere Studio
www.lotus.com/Idd/today.nst

Sronre LR %
:Irrrrn et SOBD Mo S e D =l o L RN |

4

i Lobus Hotes and Domera § Development, Second Edion

d Lotus Mobes and Domino RS All-in-One Exam Guds

4 Domira System Administrabon Adminsstenng Domine for Lotus Motes & the intemet
© [Thee Landrmark Senes)

:f Masténng Lobus Motes snd Domans B

Mates amnd Domind 5 Develnpsr's Guede i Bualdng Apphlsbans

Specil Edbon Lising Lotus Motes and Domed RE

TS Teach Yoursel Lofus Motes and Comind 5 Development m 21 Days

Lobus Doming Adminsiration in a Mutshel A Deskiop Quick Rederence

s CLP Fast Track Lobuss Motes/Domeo § System Admenistraton {(MCSE Fast Track)

- Busldirg intranets With Lotus. Notes & Doming § 0 How to Provide Your Employees
* ard Customers with InsStart Access 1o the information They Need

aff Lobus Motes B Dioirena Ecsentyl Refersnis [The Exsentsl Refarsnie Senss)

CLP Fast Track Lotus NolesDonmid 5 Anphc ation Developroen (MCSE Fast Track)

Frogramreng Workfiowy Apphcabons With Domng

it Special Ecktion Lsing Lotus Motes and Domena RS

Ciomara Dipviopmaent with s

Added Advanced Doming § Web Programmeng {Lobus NotesDoming Sanes) ,1'
Dane:
W Corpols [WebSphere v5.0 Tt Ervronment (WebiSphers vE.00) LI
[5-8<03 9:56:09:984 EDT] oo /85BbEe Httplransport A SRVED1Y1l: Traesport htips 18 lie
[5-B-03 ¥ 10:062 EDT] SEbE FMICenEestars A ADHCOQ FHM] Cognector availab
[S-8-03 9:56:10;156 EDT] &67058b6 Walderver A WENRDOOLE : Server server] opsn [
[S-B03 900817422 EOT)] B3 10be WebGroup 1 ERVED1801: [Amazonw5) [<AmazooWs
-
a| | [

Tasks Urks | Thumbnal Styles | Colors ;Senvers . Doming Console

Although this shows everything in the view, the code generated by the WebSphere Studio Domino custom JSP
tag integration has a few limitations. You have to add category handling (replacements for Notes twisties) and

view paging.

Paging a View
First, let's add paging support to the view. You can do this by adding the lines in boldface to the index.jsp file:

<domino:page id="pagelist" rows="10">
<domino:viewloop>
<tr>
<td><domino:viewitem col="1"/></td>
<td><domino:viewitem col="2"/></td>
<td><domino:viewitem col="3"/></td>
<ftr>
</domino:viewloop>
<domino:pageprev/> Page <%=pagelist.getPage ()%> of <%=pagelist.getPageCount()%>
<domino:pagenext/>

</domino:page>

The first tag adds paging support to the view that's displayed. The <domino:pageprev/> tag automatically adds a
Previous link if you're not on the first page. The <domino:pagenext/> tag automatically adds a Next link if there
are additional pages. These links disappear when you expect them to on the first and last pages! Unfortunately,
as of this writing, the same can't be said about the <domino:pagefirst/> and <domino:pagelast/> tags. You can
hide these links by adding this bit of code after the <domino:pagenext/> tag:

<% if (pagelist.getPage() I= 1) { %>
<domino:pagefirst/>

<% } if (pagelist.getPage() != pagelist.getPageCount()) { %>
<domino:pagelast/>

<% } %>

As you can see, you can mix Java in the same page with the Domino custom JSP tags, though it's generally not

recommended because it makes the JSPs harder to maintain and less readable. We can replace the Java if
statements using the Domutil tag library to avoid problems with matching Java curly braces, but it requires a few

© Copyright IBM

Lotus Developer Domain: Integrating Amazon Web Services using the Lotus Domino Toolkit for WebSphere Studio
www.lotus.com/Idd/today.nst

more lines:

<domutil:if>
<domutil:condition>
<%=pagelist.getPage() != 1%>
</domutil:condition>
<domino:pagefirst/>
</domutil:if>
<domutil:if>
<domutil:condition>
<%=pagelist.getPage() |= pagelistgetPageCount()%>
</domutil:condition>
<domino:pagelast/>
</domutil:if>

Adding search to the view

One great reason to use Domino back-end databases to store the information for your Web site is the full-text
search facility that is part of Lotus Notes/Domino. Adding the ability to search the view is easy. After the <BODY>
tag of the index.jsp page, add this snippet of Java code:

<%
String searchstring = request.getParameter("search");
if (searchstring =="") { /I domino:view tag blows up if you feed it a blank search string
searchstring = null;
}
String searchdefault = searchstring;
if (searchdefault == null) {
searchdefault="";
}
%>

This code creates two variables used later in the page for enabling search. The <domino:view> tag has a
ftsearch parameter. The view is search-enabled by adding this parameter to the <domino:view> tag as shown in
boldface:

host="SlipGate"
ftsearch="<%=searchstring%>">

Finally, after the </domino:view> tag, add this small search form:

<domino:preserve name="search"/>
<form method="get" action="indexjsp">Search: <input
name="search" value="<%-= searchdefault %>"></form>

Note the use of the <domino:preserve> flag. The Domino custom JSP tags hide some of the implementation of
paging from you by invoking URLSs with hidden parameters to do the paging. By using the <domino:preserve>
tag, you tell the Domino custom JSP tags to keep your parameters when it generates its URLSs for view paging.
In our example, if a user is searching for Sams and clicks the next page, you want the results of the next page to
be the next set of search results for Sams instead of the next page in the view without any search criteria. Here's
what our Web page now looks like with the search form in place:

© Copyright IBM 6

Lotus Developer Domain: Integrating Amazon Web Services using the Lotus Domino Toolkit for WebSphere Studio
www.lotus.com/Idd/today.nst

Tshowbotk i R *

e gp

Zol

Page 1 of 3 Next Last

State Title

Added Sams Teach Yourself Lotus Motes 5 in 24 Hours

Added Lotus Motes and Dominag 4.5: Developer's Guide (Sams Developer's Guide)
Adoed Sams Teach Yourself Lotus Motes 5 in 10 Minutes

Added Sams Teach Yourself Lotus Motes 4.6 in 24 Howrs (Teach Yoursel, .)
Added Sams Teach Yourself Lotus Motes and Doming 5 Devalopment in 21 Days
Adced Lotus Motes and Domino 4.5 Developer's Guide (Same Developer's Guide)
Added Sams Teach Yourself Lotus Motes and Doming 5 Development in 21 Days
Adcded Lotus Motes 4 Adrsmetrater's Suraval Guidie

Added Lotus Motes 4 Unleashed

Added Lotus Motes and Doming Server 4 8 Unleashed: with COROM

Search |'5i.|||'|'5

Linking documents to the view

Now that you have a view that anonymous users can use, you need to add links to each view entry so that users
can look at the details of each book. This is easily done using the <domino:formlink> tag. All you have to do is
surround the appropriate column of each view entry with the tab and link to a JSP that you designed to display
the document:

<domino:formlink href="showBook .jsp">
<domino:viewitem col="3"/>

<domino:formlink></td>

After you do this, you can display the view page in the browser, and it looks like this:

Page 1 of 3 Newt Last

State Title

Added Sams Teach Yourself Lotus Motes § in 24 Hours

Added Lotus Motes and Doming 4.5 Developer's Guide (Sams Developer's Guide
Added Sams Teach Yourself Lotus Notes 5 in 10 Minutes

Added Teach Yourself H d6in 24 irs (Teach rself
Added Teach Yourself M n ming 5 lepment in 21

Added Lot fing 4 lnper's Guj s Guide
Added Teach Yourself s M r ming 5 rnent in 21
Added Lotus Motes 4 Adrministrator's Surveval Guide

Added M 4 Lind

Added S an mi Inleashed w

Search [SAMS

Under the covers, the URL it generates is similar to showBook.jsp?unid=<docunid> in which <docunid> is the
unique document ID that we've come to know and love as part of Notes.

Displaying document details

Follow the earlier procedure for generating the index.jsp file to create showBook.jsp. After you create
showBook.jsp, you can open the same Domino database browser in WebSphere Studio and drag and drop the
Book form from the Notes database to the JSP. The Domino Toolkit automatically generates code to display all
the fields in the form, so it looks like this:

© Copyright IBM 7

Lotus Developer Domain: Integrating Amazon Web Services using the Lotus Domino Toolkit for WebSphere Studio
www.lotus.com/Idd/today.nst

Tndexrp el X | 4 Web Browser
showBook,J5p

:form name="BookForm" dbname="AmazonWS.nsf" dbservers=
]l

td*NotasVer: . ted
tdrddomingcinput name="NotesVer® type="text”

td*Catagory:

- name="Category" type="text" td>

tdrStated td
{tdr{domina:input name="State" type="text" i {std

rinput name="ASIN" tvpe="text" “td

minc:input name="ISBH" type="text" td

Attribute : name
drPublisherd-td Qata Type : COATA

DES';‘IIS'DLIC-E Preview

The default for the <domino:form> tag is to display the document in read mode instead of edit mode. You should
also add a link to let the user go back to the view; that can be done by adding this line before the </BODY> tag:

Back

Now you can run the index.jsp file on the test server and click one of the links in the view. The book document
displays in your browser like this:

Bndeckp | TrshowBook o -?m x|
it oc oS £ A0E0AMARONINE ShowBook, BpTUnadsESdE 2 TF9 156C 3393852560 1B _ﬂ 2=
MotesVer
Category
State Added
ASIN 1362055483
ISBN 1562059483
Publishar e
Authors Rab Kirldand
" Drarrmmo System Adrm o Adreemeterng Dommo for Lonee Hotes & the
. Internet (The Landmark Senes)
Back

Creating administration pages

Now that you have your basic view and document pages done, you can concentrate on the administration pages
which can be based on your previous work. Create an admin subfolder in the Web Content directory of your
project. Copy the index.jsp and showBook.jsp files into the new subdirectory, then rename showBook.jsp to
editBook.jsp.

Adding delete capability to the view

Adding the ability to delete documents is simple because of the Domino custom JSP tags. First, allow the tags
to generate selection checkboxes for each view entry. This is done simply by adding the enableselect parameter
to the <domino:view> tag in indexjsp:

© Copyright IBM 8

Lotus Developer Domain: Integrating Amazon Web Services using the Lotus Domino Toolkit for WebSphere Studio
www.lotus.com/Idd/today.nst

ftsearch="<%=searchstring%>"
enableselect="true">

You also have to add the <domino:selectentry> tag where you want the checkbox displayed. We put it just before
the title:

<domino:selectentry/><domino:viewitem col="2"/>

Now you have to add the actual code to handle the deleting of the documents. Before the <domino:view> tag,
add this action code (it has to appear before the view in which you use the action):

<domino:ifserverevent event="OnAction" for="DeleteDocuments ">
<domino:selectedloop viewname="Books/by Status"
dbserver="CN=SlipGate/O=KEY Enterprise Solutions"
dbname="AmazonWsS.nsf"
user="username"
password="password"
host="SlipGate">
<% document.remove (true); %>
</domino:selectedloop>
</domino:ifserverevent>

The <domino:selectedloop> parameters should match the parameters you use in the <domino:view> tag.
Finally, you need to add a link that invokes this delete action. You can do this by adding the following line of code
after the </TABLE> tag:

<domino:action name="DeleteDocuments" text="Delete Selected Documents"/>

After you do this, you see a Web page that looks like this:

- AT

Page | of 3§ Hext Last
State Title

Addad 1 : E
Added T 5 e5 and Domeng RS All-in- m G

Added Rming Syvstern Administration: Administenng Domino for Lotug Motes & the
™ Infernet (The | sndomark Senes)

NG S0 BCOn

Addad [Mastern M i Toatia!

Addded i i

Addad

Adided

Agdad

Addad

P45 nI c fl mnrI Ilh 1 ~{ 'Ih:I:' Trabpn They ¢

Dielste Selacted Documents

Search I

You can select documents to delete them. You can use a similar technique to recategorize documents.

Editing documents

Administrators need to be able to edit the Category and Notes Version fields in our book documents. To do this,
you have to modify the <domino:form> tag in editBook.jsp to include the editmode parameter:

schema="Book"

© Copyright IBM 9

Lotus Developer Domain: Integrating Amazon Web Services using the Lotus Domino Toolkit for WebSphere Studio
www.lotus.com/Idd/today.nst

editmode="edit">
Also, modify the <domino:formlink> tag in admin/index.jsp to open the editBook.jsp page:
<domino:formlink href="editBook.jsp">

When you click a link on the admin/index.jsp page, you see a form that looks like this:

o Wil X [T edtBookisp | indexisp
hittp: /Ao abiost: 9080/Amazenws fadmin/ediBock. jspaurid=0E64F6 3728B586589525 w |
MotesWar |
Category |
State |Added
ASIN 10672325020
ISEN 0672325020
Publisher 15 ams
Authors JS‘tnvnn Kermn, Deborah
Title h_utus Notes and Domi
Back

You may notice a few things with this form if you've seen the equivalent served up by Domino: The NotesVer and
Category fields are not automatically displayed with the selections available from the Notes form; you need to
change the lengths of some fields; and you may want to make a majority of the fields read-only. Let's
concentrate on the read-only fields first. The only fields that should be editable are NotesVer, Category, and
State. The rest should be read-only. Change the <domino:input> tags in the editBook.jsp to <domino:item> for
the read-only fields. Remember to remove the type="text" attribute that the Lotus Domino Toolkit for WebSphere
Studio puts in automatically for the <domino:input> tags because that attribute is not available for the
<domino:item> tag.

Next, you have to modify the NotesVer, Category, and State fields so that they're no longer simple text input fields,
but checkboxes and radio buttons. Unfortunately, they don't read the possible values from the Domino form.
Here's what the NotesVer field changed to a checkbox looks like (the original <domino:input> tag is commented
out):

<l--domino:input name="NotesVer" type="text" /-->

<domino:checkbox name="NotesVer" value="3" multivalue="true"/>3
<domino:checkbox name="NotesVer" value="4" multivalue="true"/>4
<domino:checkbox name="NotesVer" value="4.5" multivalue="true"/>4.5
<domino:checkbox name="NotesVer" value="4.6" multivalue="true"/>4.6
<domino:checkbox name="NotesVer" value="5" multivalue="true"/>5
<domino:checkbox name="NotesVer" value="6" multivalue="true"/>6

And here's the code needed to modify the State field using radio buttons:
<l--domino:input name="State" type="text" /-->
<domino:radio name="State" value="New" />New
<domino:radio name="State" value="Added" />Added
<domino:radio name="State" value="Not Relevant' />Not Relevant

<domino:radio name="State" value="No Longer Published" />No Longer Published

Lastly, you need to add a method for saving the document and for returning to the previous view. This is done

© Copyright IBM 10

Lotus Developer Domain: Integrating Amazon Web Services using the Lotus Domino Toolkit for WebSphere Studio
www.lotus.com/Idd/today.nst

using the <domino:saveclosedoc> tag. Add this line of code after the </TABLE> tag:
<domino:saveclosedoc validhref="index.jsp" text="Save Document'/>

If you preview this, you have a Web page that looks like this:

(@ Weil X [T ediBook jsp

| hittp:/focaihost:9080/Am azonWS /admin/editBock JspPUnid =0E64F6 37 2BB SBE6ES

MotesVer M3C4aCasC46 5 Ma

Category ™ Prograrmng [Admirestration [User

State © New @ Added © Mot Relevant © Mo Longer Published
ASIN 0672323020

ISBN 0672325020

Publisher Sams

Authors Steven Kem, Deborah Lynd

Title Lotus Metes and Domino 6 Development, Second Ediion
Save Document

Back

Session variable security
For session variable authentication, you put the following variables in your Web session when a user is
authenticated:

Variable Description

|_user User's login name or *webuser if you use container-managed security
I_pw Password user used to log in

|_admin Value 1 if user has administrator role

|_fullname User's full name (what the user entered to log in)

First, you have to create a checkLogin.jsp file which checks if a user is logged in. The following is a JSP
fragment that is included (via checkLogin.jsp) in all pages in the admin directory that requires the user to be

logged in:

<%
/ this JSP file needs to be imported by all ISP files so they can
/I get the usernamel/password properly

String username = (String) session.getAttribute ("l_user");
String password = (String) session.getAttribute ("|_pw");
String isSAdmin = (String) session.getAttribute ("I_admin");
String fullname = (String) session.getAttribute ("l_fullname");

if (username == null) &&
(request.getRemoteUser() = null) &&
(request.getRemoteUser().compareTolgnoreCase("Anonymous”) !=0)) {
Il this handles the case of using container-managed security and only works
I'if your J2EE container supports Domino Multi-User Session Authentication;
/I we have to save the admin role state and stick it in the session variables
/l'and the username is set to *webuser so the Domino JSP Custom tags know to use
/[the Domino Single Sign On mode of logging in

© Copyright IBM 11

Lotus Developer Domain: Integrating Amazon Web Services using the Lotus Domino Toolkit for WebSphere Studio
www.lotus.com/Idd/today.nst

fullname = request.getRemoteUser();
session.setAttribute ("l_user", "webuser");
session.setAttribute ("I_fullname”, fullname);
if (requestisUserIinRole("Admin")) {
session.setAttribute ("l_admin®, "1");
}else {
session.setAttribute ("l_admin", "0");
}

}

if (username == null) {
/l'if username is blank, we have to send the user back to the login page
/ this path is not taken if you use container managed login because no
/I pages are loaded until you're logged in successfully
response.sendRedirect("../login.jsp?ar=1");

}

%>
There is also some extra code for the container-managed security case, so you can share some of the other
code which we'll discuss later. The rest of the code loads the user name/password into variables which you can

reference in JSPs later. If the user name is not available in the session, you will know that the user has not been
logged in and return them to the login.jsp page with an ar parameter indicating that authentication is required.

In your admin/editBook.jsp and admin/index.jsp pages, you can insert this line at the top:
<% @include file="../checkLogin.jsp"%>

which loads the JSP fragment to check that a user is logged in. If you use coding patterns, this is called the
Guard Pattern to indicate that each page that is secure has a check at the start of it.

In these pages, you have to modify the Domino custom JSP tags to use the variables instead of hardcoding user
names and passwords like so:

user="<%=username%>"
password="<%=password%>"

Here's the code for the doLogin.jsp page which uses a mixture of Java and Domino custom JSP tags:
<% try {

String username = request.getParameter("'username");
String password =request.getParameter("password");

%>
<domino:db host="SlipGate"
dbname="AmazonWsS.nsf"
dbserver="CN=SlipGate/O=KEY Enterprise Solutions"
user="<%=username%>"
password="<%=password%>">
<%

/I Store the username into session context
session.setAttribute ("l_fullname”, request.getParameter("username"));
session.setAttribute ("|_user”, request.getParameter("username"));
session.setAttribute ("|_pw", request.getParameter("password"));
session.setAttribute ("l_admin®, "0");
%>
<domino:ifdbrole name="Admin">
<% session.setAttribute ("l_admin®, "1"); %>

© Copyright IBM 12

Lotus Developer Domain: Integrating Amazon Web Services using the Lotus Domino Toolkit for WebSphere Studio
www.lotus.com/Idd/today.nst

</domino:ifdbrole>
</domino:db>
<%
response.sendRedirect("index.jsp");

} catch (Exception e) {
/ flush current login info
session.setAttribute ("I_user", null);
session.setAttribute ("I_pw", null);
session.setAttribute ("I_admin", null);
Il redirect to login page
response.sendRedirect("login.jsp?1f=1");

}

%>

Note that it retrieves the user's role information from the Notes database's ACL. This eases management of the
application, so you don't have to define a separate user/role mapping on the J2EE server. It returns to the login
page with an If parameter to indicate a Login Failure; it opens the main view if it is successful.

The doLogin.jsp page is called by login.jsp which is fairly simple, even with the conditional display of error
messages at the top of it:

<form method="POST" action="doLogin.jsp">
<domutil:if>
<domutil:condition>
<%-=request.getParameter("If") I= null%>
</domutil:condition>
<center>Login Failure!</center>
<p>
</domutil:if>

<domutil:if>
<domutil:condition>
<%= request.getParameter("ar") != null%>
</domutil:condition>
<center>Authorization Required. Please Log In.</center>
<p>
</domutil:if>

<TABLE border="0">
<TBODY>
<TR>
<TD>Username:</TD>
<TD><input type="text" name="username"></TD>
</TR>
<TR>
<TD>Password:</TD>
<TD><input type="password" name="password"></TD>
</TR>
</TBODY>
</TABLE>
<input type="submit" value="Log In">
</fform>

Lastly, you have the logoutjsp page. It's a simple matter of purging the Web session to do the actual logout:

<%

© Copyright IBM 13

Lotus Developer Domain: Integrating Amazon Web Services using the Lotus Domino Toolkit for WebSphere Studio
www.lotus.com/Idd/today.nst

/I this just purges any log information and goes to the index page
session.invalidate();
response.sendRedirect("index.jsp");

%>

After this is all done, add code to the top-level indexjsp (not the index.jsp located in the admin subdirectory), so
users can login, logout, and access the administration pages. You do this with another bit of Java code:

<%
if (session.getAttribute ("I_user") = null) {
response.getWriter().printin("You're logged in as " + session.getAttribute ("l_user"));

String hasAdmin = (String) session.getAttribute ("l_admin™);

if (hasAdmin != null) &&

(hasAdmin.compareTo("1") ==0)) {
response.getWriter().printin("
You have the Admin role");

}

response.getWriter().printin("
Log Out");

}else {

response.getWriter().printin("Log In");

}

response.getWriter().printin("
Admin Page");
%>

Container-managed security

If you have a J2EE server that can support Multiserver Single Sign-On with Lotus Domino, such as JBoss (with a
third party add-on: Domino/JBoss SSQ) or IBM WebSphere Enterprise (the lower versions of WebSphere do not
support Domino SSO), you can take advantage of container-managed security for your application. The container
uses Domino (running LDAP) to log the user on, so user information is maintained in your standard Domino
Directory; roles can be managed by the J2EE server or be in the Domino Directory depending on the J2EE
server's implementation.

You have to make several modifications to your web.xml file to protect the /admin directory of our Web application
so that it can only be accessed by users with the Admin role. Luckily, WebSphere Studio presents you with a
nice Web deployment descriptor editor, so you don't have to worry about getting spelling and order correct in the
web.xml changes. Edit WEB-INF/web.xml in WebSphere Studio by double-clicking on it to bring up the Web
Deployment Descriptor Editor. You start in the Overview tab. Click the Security Details button or click the Security
tab at the bottom of the window:

o ORI :
¥ ckfakhim Dotnis| o
0 e il |

Endsiromment Warialiles
Mol Type
T Folorineg Srnronment viriblss e reevart i e
Thee Folormry] Bl etirrmors ae mapped to mime Bypes s .;ck.:ﬁm’l
[.
|Dets | Dests|
= Sacurity - Comnbiat Paranmees

The: fodcrmirg Securiby rokess and corefrants are cefried

T Folicr GO il DarAmMaters anrdy o
for s web appicanon % Folmereg Conile Rz AToN par amaters appdy 1o 3

serviets In e web appdcation

* e | —_————
& admn | Detals | el
s
Ther fodomang ioors represend: the wels applcrbon - Whikegdhiere Dinlings
Sl | JiBriwee,,.| Vil Host Basme [Sefar_host
Large:[J{Browee.., |

Cvarview Sanviets Fiers Listansrs . Security | Ernironmeant. Refenances | Pages | Parameaters MIME | Exterdions , Sourcs

© Copyright IBM 14

Lotus Developer Domain: Integrating Amazon Web Services using the Lotus Domino Toolkit for WebSphere Studio

www.lotus.com/Idd/today.nst

After clicking the Security tab, click the Security Roles tab (this other tab is under the Security heading on the
page). Once there, you can add a role named Admin. Next, click the Security Constraints tab. Add a URL
restriction (for GET, PUT, HEAD, POST, DELETE HTTP methods) to specify that/admin/* URLs should only be

editable by users with the Admin role:

Name: | Admin Restricted
Description: | Directory restricted to admins or
HTTF Methods

=
Mt J
Mrut
MHED

hd

CJmace

[¥lrosT
URL Patterns | add |
fadmin* Rermowve

O Cancel

That's really all there is to it. The benefit to using this type of security is that everything in that /admin directory is
now protected. You won't hear a story about how someone found an unprotected URL in the /admin directory

and deleted everything in your database.

You should also add the following code to the checkLogin.jsp file for container-managed security:

if (username == null) &&
(request.getRemoteUser() != null) &&

(request.getRemoteUser().compareTolgnoreCase("Anonymous") !=0)) {

/I this handles the case of using container-managed security and only works

/'if your J2EE container supports Domino Multi-User Session Authentication;

/l we have to save the admin role state and stick it in the session variables

/l and the username is set to *webuser so the Domino custom JSP tags know to use
/I the Domino Single Sign On mode of logging in

fullname = request.getRemoteUser();

session.setAttribute ("l_user", "*webuser");
session.setAttribute ("l_fullname", fullname);

if (requestisUserInRole("Admin™)) {
session.setAttribute ("l_admin®, "1");
}else {

session.setAttribute ("l_admin®, "0");

}

© Copyright IBM

15

Lotus Developer Domain: Integrating Amazon Web Services using the Lotus Domino Toolkit for WebSphere Studio
www.lotus.com/Idd/today.nst

When you have container-managed security, you can use the standard servlet methods of getRemoteUser() and
isUserInRole() to get the user's name and to check if the user is in a role, respectively. Unfortunately, this is only
valid in the restricted /admin directory. When the user returns to the top level directory, these methods may or
may not work depending on the J2EE container's implementation of the servlet API. Because this code is
executed at the top of all JISPs in the /admin directory, you can tuck this information into the session, so you can
getto it in the nonrestricted JSPs.

If you want to test container-managed security in the WebSphere Test Environment in WebSphere Studio, you
must run the LDAP service on Domino because WebSphere uses LDAP for logins. In the Server Configuration,
double-click WebSphere v5.0 Test Environment to open the configuration. Then, in the WebSphere Server
Configuration, select the Enable the administration console option. Next, start the WebSphere server. You can
then open the WebSphere Admin Console by logging on to http:/localhost:9090/admin/ and enabling Global
Security and configuring LDAP:

Global Security

Sphcifie ghobal securty confguralion 1or & sanaged doman, The falewing HepE 0 ngrsd 1o burh o secialy, 1) Sesg
e daired Ubter Regioiry froem e kR rivvigeton parel and 2ol the properties inthal parel. 2) Enable securty in iz pans. [

Cordiguration
Enaicied (1] Ensibiess: security
= subsysten in this
penticudar gerver
Enforcs Java I Security L] Lksed 10 srvsbie or
= by Jgren 2

Securily permission
Chescking . Wken Java
2 Sacurity is snablad
il if thes application
ey Tl i Nl
sefup coerecthy, the
ppication ooulkd

ot ertialy Tol 19 run

Deployment to a J2EE server

Before you can deploy the AmazonWS jar file to your J2EE server, you have to set a few things up to get the
Domino custom JSP tags to work. First, copy the NSCO,jar file to your J2EE server (this assumes you're using
DIIOP to access Domino). It should be placed in a directory that is available to all Web applications; in
WebSphere, this is /appserver/lib/ext. If you want to specify the Domino server that hosts all of the databases in
one place instead of specifying the server in each Web page, you can add the following context-param to your
web.xml file:

<context-param id="ContextParam_host">
<param-name>lotus.domino.defaulthost</param-name>
<param-value>DominoServerName</param-value>
</context-param>

Summary

The benefits of using the Lotus Domino Toolkit for WebSphere Studio include Web application performance,
development efficiency, and increased security. Application performance is increased over a pure Domino
application because the Web application front-end can be separated from the Domino server which can then be
used solely for serving Notes databases.

Web applications can be developed more quickly by doing the administrative editing of documents using the
Notes client rather than spending time to create a section of your Web application just for administration. The
Domino custom JSP tags (but not the WebSphere Studio integration) provide automatic view paging and
simplified support for view document selection/processing. They also provide access to Domino's vastly
superior full-text indexing instead of devoting a lot more work to relational databases' full-text indexing.

If you want added security for your Web application, Notes databases' document-level read/write control is much
better than what is provided by relational databases. As a secondary level of security, Notes database ACLs can

© Copyright IBM 16

Lotus Developer Domain: Integrating Amazon Web Services using the Lotus Domino Toolkit for WebSphere Studio
www.lotus.com/Idd/today.nst

be used if you access the Notes databases as real users instead of as an anonymous user as you usually do in
Web applications that use a relational database back-end.

The Domino custom JSP tags provide a good option for companies with a Notes/Domino infrastructure that
want to provide access to Notes/Domino data using a J2EE application server. IBM/Lotus have mentioned many
times that their Domino/WebSphere integration will include integrating these tags more tightly with WebSphere
Studio. The Lotus Domino Toolkit for WebSphere Studio is just the first step down this path.

ABOUT THE AUTHOR

Ken Yee has been a consultant and Lotus Business Partner since the inception of the program. He has done software
development since 1989 and is always looking for interesting J2EE/Domino integration projects. His company, KEY Enterprise
Solutions, has done Notes, Domino, lIIS/ASP, Java, ActiveX/COM, and C++ development and administration projects for Lotus
, Inso/Stellent, Logica, eVelocity, World Bank, and Analysis Group. KEY Enterprise Solutions maintains the
Notes/Domino FAQ (the first Notes FAQ on the net) as a service to the Notes community and the Java Servlet FAQ for the
Java community .

© Copyright IBM 17

