

by
Bruce
Perry

Level: Advanced
Works with: All
Updated: 10/01/2001

Object-oriented (OO) development doesn’t have to be mysterious. It’s
really just another way to organize your code. The good news is that if
you’re writing Notes/Domino applications in LotusScript, you already know
how to use objects because the front-end and back-end classes like
NotesUIDocument and NotesDatabase are fundamental to everything you
do. If, however, you’re like most Notes/Domino developers I know, you
write your code to use those objects in the built-in subroutines (like
QueryOpen and QuerySave) that Domino Designer creates for your design
elements, and you also write your own subroutines and functions. That
seems to be typical, even for most advanced LotusScript developers, but
there’s a lot more that you can do with OO to improve your applications.

Have you ever seen a Notes database with five or six versions of the same
function in different locations? Or worse, have you ever fixed a problem in
one LotusScript function only to discover that you need to fix it elsewhere
too? If so, you already know one advantage to defining your own classes.
Classes help you keep related code and data together—a strategy that is
sometimes called “encapsulation”—so that many changes can be made to
your implementation without forcing you to dig through your code to find all
the different places that need to be updated.

It’s not all that surprising that the object-oriented features of LotusScript
aren’t being used as often as they could be. Most books and magazine
articles tend to touch only lightly on the topic. Then too, some may worry
about needing to learn lots of OO theory. However, you can derive
immediate and practical benefits from classes and objects without going to
all that trouble. Other developers may shy away from it because they have
heard (as I did, early on) that LotusScript isn’t OO in the "right" way.
LotusScript may not have all the OO features of C++ or Java, but the
features that are there can be very useful if you know how to take
advantage of them.

In this article, we’ll develop five useful classes that demonstrate OO
techniques. Each new class will build on the previous classes to add
additional capabilities. We’ll learn how to extend existing classes and data
types by composition and by inheritance. Since it's not possible to inherit
from the built-in Notes classes in LotusScript, we’ll learn how to use
composition to get around that limitation and build new classes based on
the built-in classes. We’ll also learn about base classes and subclasses
and how a subclass can override the behavior of the classes it inherits
from. We’ll see how the use of classes can simplify a Notes database by
helping to eliminate duplicate code. Finally, we’ll learn how to override
events with our classes and thus learn an additional way to share code.

Although covering every nuance of LotusScript’s object-oriented features
is beyond the scope of one article, we’ll look at the most important ones
and recommend resources for those who want to know more. I’m going to
avoid saying much about the features of other OO languages. Though that
knowledge might give you a broader theoretical understanding of
object-oriented languages, it won’t help you write object-oriented
LotusScript tomorrow. For those interested in general information about
object-oriented programming, I’ve listed several books in the Additional

© Copyright 2001 Iris Associates, Inc. 1

Notes.net: Using the object-oriented features of LotusScript "Iris Today" webzine at http://www.notes.net

resources section.

This article is intended for Notes developers who use LotusScript but who
haven’t been exposed to object-oriented programming yet. The code for
this article was developed and tested in Notes R5. It has received some
testing in Notes 4.6 as well. A sample database in the Iris Sandbox
includes the code described in this article. To get the most out of this
article, you’ll find it helpful to know about script libraries and events.

Basic definitions
Before we get started, let’s look at a few definitions. An object is something
with a name, a set of attributes, and a set of methods. Attributes are data
values, and methods are pieces of code that can manipulate the data
values. A class is a group of dims, subs, and functions that can represent
and manipulate the attributes of an object. The dims set up storage for the
object’s attributes, and the subs and functions contain the code for the
object’s methods. Classes can also contain a special type of routine,
called a property, that is used to get or set a data element that was
"dim’ed" using the Private keyword.

In LotusScript, an object is created using the New keyword. You can have
many objects of the same class at the same time in your code, and they do
not share their data values. The word instance is often used instead of (or
in addition to) object in order to emphasize this fact.

Data values, properties and methods, and methods of an object can only
be referenced through “dot notation” using the instance on the left of the
dot, and the data value, property, or method on the right. For example, if
you have a class named Book with a property called Title, you could have
code like this:

Dim ThingOne as New Book
Dim ThingTwo as New Book
ThingOne.Title = “The Cat In The Hat”
ThingTwo.Title = “Green Eggs And Ham”

By the way, a wise programmer once observed that object-oriented
programming sounds a lot less solemn and complicated if you substitute
the word thingy for the word object whenever you see it. Now, let’s take a
look at some thingy-oriented code.

Creating a simple LotusScript class
First we’ll take a look at a simple LotusScript class. On its own, it’s not very
useful. It's simply a container for a string and a key value to identify it.
Please bear with me. In conjunction with some other classes we’re about
to build, I think you’ll see that it’s a very handy building block.

Note that the class’s data is declared Private, and access is provided via
properties rather than direct access to the data elements. Why take this
extra step? We do it because the code will inevitably change. With these
properties in place, we can validate values users give us via the set
properties and calculate values returned by get properties that don’t have
corresponding data elements. For example, the class could have an
additional property that returns a metric dimension even though the
internal data element is stored in the English system. Also, by leaving out
the set property for a data element, you can protect it from being altered by
any user of that class as long as the data element in question is private.
We don’t get those advantages if we allow direct access to a class’s data.
In the OO world, providing data access like this via properties is called
data hiding. Although it’s possible to declare class data elements as
public; in general, a class’s data should be private. The users of the class
should be provided with properties, functions, and subroutines to access

© Copyright 2001 Iris Associates, Inc. 2

Notes.net: Using the object-oriented features of LotusScript "Iris Today" webzine at http://www.notes.net

only the information they need. This will prevent them from changing the
class’s data in inappropriate ways.

Public Class ListItem
' Note: this class issues an E_BLANK_KEY error if sub new or set key
' is passed a blank key

Private m_key As String
Private m_value As String

Sub new (key As String, value As String)
If key = "" Then 'don't allow a blank key

Error E_BLANK_KEY, E_BLANK_KEY_MSG
End If

m_key = key
m_value = value

End Sub

Property Get key As String
key= m_key

End Property

Property Set key As String
If key = "" Then 'don't allow a blank key

Error E_BLANK_KEY, E_BLANK_KEY_MSG
End If
m_key = key

End Property

Property Get value As String
value= m_value

End Property
Property Set value As String

m_value = value
End Property

Sub PrintItem
Print "ListItem: key = " & Me.m_key & " value = " &
Me.m_value

End Sub

End Class

If you look at the Sub New method and the Set Key property, you’ll see
they both issue an error when they encounter a blank key. Why is that?
Simply because that’s the best way available to indicate that a problem
has occurred. Neither the property nor the method has a return value
available for signaling error conditions.

Creating a class using composition
What can we do with the ListItem class? Not much without more classes.
Let’s create another class so that we can do something useful.
LotusScript’s list data type is an extremely useful tool. If you’ve made
much use of it though, you may have noticed that there’s no way to get a
count of the elements in a list without keeping track yourself (or cycling
though the list). Here’s a class that can be used as a “wrapper” around a
list, which solves this problem. (The BetterList class sidebar contains an
uninterrupted version of the code.)

Public Class BetterList
Private m_list List As Variant
Private m_count As Integer

© Copyright 2001 Iris Associates, Inc. 3

Notes.net: Using the object-oriented features of LotusScript "Iris Today" webzine at http://www.notes.net

Property Get Count As Integer
Count = m_count

End Property

Public Function DeleteList
Erase m_list

End Function

Public Sub new
m_count = 0

End Sub

Sub Delete
Call Me.DeleteList

End Sub

Notice that the class’s variables all start with the string m_. This is a
convention I’ve borrowed from the C++ world. It allows us to know at a
glance which variables belong to the class itself rather than the current
function. I’ve found that this convention can save a lot of time, especially in
large classes. Notice also that m_list is private; there’s no way for
someone using this class to tinker with the list directly. That’s the only way
to be absolutely sure that the count stays correct.

Next are several of BetterList's class functions (or methods). They're just
like regular functions, but they're defined within the class.

Public Function DeleteItem(key As String) As Integer
Dim rval As Integer

'if the key is in the list, erase the object
If (Iselement(m_list(key))) Then

Erase m_list(key)
m_count = m_count-1
rval = True

Else
'if there's no such key, warn of an error
rval = False
Print "Item " & key & " not found. It could not be deleted."

End If

DeleteItem = rval
End Function

Public Function AddItem(key As String, item As ListItem) As Integer

'just add the item if the key doesn't exist
If (Not Iselement(m_List(key))) Then

Set m_list(key) = item
m_count = m_count+1

Else
'if the key does exist, erase the current object in the list
'and add the new one
Erase m_List(key)
Set m_list(key) = item

End If

End Function

In the next section of code, you’ll see that GetItem returns a variant. Why
is that? Well, the function could return a ListItem, but then we’d have to
have additional classes just like BetterList that return each type of object

© Copyright 2001 Iris Associates, Inc. 4

Notes.net: Using the object-oriented features of LotusScript "Iris Today" webzine at http://www.notes.net

that we want to deal with. This way one class can handle multiple object
types. Using variants in this way can cause problems if done carelessly. If
GetItem returns an item of the wrong type, you’ll most likely get a runtime
error when you try to treat it as the type you’re expecting.

(In the next class we discuss, EnhancedUIDoc, we see one way around
this problem. There, we immediately assign the variant to an object of the
correct type and any further access is done via the object. This assignment
in EnhancedUIDoc also has the effect of revealing errors in property
names and functions at compile time rather than runtime. I prefer to use
the compiler to find errors whenever I can. It’s far easier than finding
problems through testing and saves time as well.)

This is the real workhorse function in this class. It's used to get access to
the objects we're storing in the list.

Also, just below, you can see that we’ve put error handling code in place. It
indicates the type of error and the class and method (or property) where
the error has occurred; it then permits processing to continue. Though
basic, this can be quite helpful in pinpointing the origin of an error. Without
it, we must do a lot of tedious debugging before we even know where the
in the code the problem occurred. If your application is complex and your
use of classes extensive, you’ll find this practice can save a lot of time.
Also, you may want to consider creating a database specifically for logging
errors.

Public Function GetItem(key As String) As Variant
Dim itm As ListItem
On Error ErrListItemDoesNotExist Goto NoSuchItem
Set GetItem = m_list(key)

OK:
Exit Function

NoSuchItem:
'return a value of Nothing if the key was not found
Print "List item " & key & " not found."
Set itm= Nothing
Set GetItem = itm
Resume OK

End Function

'see if there's an object in the list for a given key
Public Function IsInList(key As String) As Integer

Dim rval As Integer

If (Iselement(m_List(key))) Then
rval = True

Else
rval = False

End If

IsInList = rval
End Function

End Class

Functions and subroutines within a class (for example, GetItem or AddItem
as used here) are frequently called methods in the OO world. The Sub
New subroutine in a class has a special name; it’s called the constructor. It
gets called automatically when an object of that class is created. This
subroutine is commonly used to do any initialization and setup work

© Copyright 2001 Iris Associates, Inc. 5

Notes.net: Using the object-oriented features of LotusScript "Iris Today" webzine at http://www.notes.net

needed by the class.

It’s also possible to have another special subroutine, the Sub Delete. It’s
known as the destructor. This is called automatically when an object of that
class is deleted. Neither of these special subroutines is required. The
constructor is so useful that I rarely leave it out. I don’t bother with a
destructor unless there are memory management issues to cope with.
We’ll discuss memory management in the Objects and memory
management section of this article.

The theory of composition
By the way, the technical term for building a class in this way is
composition—also known as aggregation. In this case, we’ve built a new
class that contains several previously defined data types. Classes can also
contain data elements that are objects themselves. We’ll see how that
works shortly.

In the OO world, composition or aggregation are called a “has a”
relationship. A car has an engine and tires, fruit has seeds and skin, and
so on. Many books explaining object-oriented languages use diagrams and
code based on examples like these. Such diagrams certainly help illustrate
OO concepts and below is my own version, but I’m not so sure about the
code that traditionally goes with the diagrams. It works, but it doesn’t do
anything useful. I think the code included in this article is a better argument
for using OO techniques. It shows you how to do something useful in an
object-oriented way.

Creating a class by extending a built-in class
This BetterList class is useful as is; it does something that a standard
Notes list can’t do. We’re not going to stop here though. Using the two
classes we’ve just built, we’ll build a new class that can be used to add a
set of common features to all the forms in a database. We’ll even be able
to change those features where the standard ones are not desired. Since
it’s not possible to create new classes that inherit from LotusScript’s

© Copyright 2001 Iris Associates, Inc. 6

Notes.net: Using the object-oriented features of LotusScript "Iris Today" webzine at http://www.notes.net

built-in Notes classes, we’re going to extend the capabilities of the
NotesUIDocument front-end class by using the composition technique
again. We'll call the new class EnhanceUIDoc.

One major benefit we’ll get from this class will be the ability to detect
changes made to any field in the form. Notes applications frequently do
this by having an invisible “shadow” field for each field to be tracked. By
using EnhancedUIDoc, we can eliminate the need to add extra fields, thus
helping to keep forms simple and save developer time. If you don’t want to
track changes to all fields, you can create a class that inherits from
EnhancedUIDoc that keeps its own list of fields to check. A profile
document would be one potential place from which to load such a list.
(We’ll see how inheritance works shortly; in fact, we'll use EnhancedUIDoc
later as the base class in our inheritance examples.)

For the sake of simplicity, this class assumes that all field values will be
strings and that there will be only one value per field. It would be easy to
change this class to deal with different field types and multiple values. The
field types can be determined by means of NotesItem.Type property. The
NotesItem.Values property returns an array that can be counted to
determine if it contains a single value or multiple values.

Here's the EnhancedUIDoc class, which contains the BetterList class. (For
an uninterrupted version of the code, see the EnhancedUIDoc class
sidebar.)

Class EnhancedUIDoc
Private m_uidoc As NotesUIDocument
Private m_uiw As NotesUIWorkspace
Private m_origvalues As BetterList
Private m_doctype As String

Sub ProcessPostopen(Source As NotesUIDocument)
Dim doc As NotesDocument
Dim ltm As ListItem

Print ("EnhancedUIDoc - ProcessPostopen")

Set doc = m_uidoc.document
Forall i In doc.Items

Set ltm = New ListItem(i.Name, i.Values(0))
Call m_origvalues.AddItem(i.Name, ltm)

End Forall

End Sub

Sub ProcessQuerysave(Source As Notesuidocument, Continue As
Variant)

Dim doc As NotesDocument
Dim ltm As ListItem
Dim rval As Integer
Dim v As Variant

Print ("EnhancedUIDoc - ProcessQuerysave")
rval = continue

Set doc = m_uidoc.document
Forall i In doc.Items

Set v = m_origvalues.GetItem(i.Name)

Here's where we turn the variant back into an object. We must make sure
it's not null first. Otherwise, Itm might not be a real object.

© Copyright 2001 Iris Associates, Inc. 7

Notes.net: Using the object-oriented features of LotusScript "Iris Today" webzine at http://www.notes.net

If (Not Isnull(v)) Then 'make sure there's an item to
compare it to

Set ltm = v
If i.Values(0) <> ltm.value Then

Print "Item " & i.Name & " new value = " &
i.Values(0)
rval = True

Else
Print "Item " & i.Name & " not changed."

End If
Else

Print "Item " & i.Name & " not found."
End If

End Forall

Continue = rval
End Sub

Sub new (uid As NotesUIDocument)
Print ("EnhancedUIDoc - sub new")

Set m_uiw = g_wks
Set m_origvalues = New BetterList
Set m_uidoc = uid

In the next lines, take a look at the On Event statements. What’s going on
here? We’re replacing some generic event handling subroutines with new
ones defined within our class. This is one more way that we can
consolidate our code when using classes. The code in ProcessQuerysave
and ProcessPostopen could have been put in the form’s Querysave and
Postopen subroutines, but that would mean separating the code for these
events from the code for the rest of the class.

On Event Querysave From m_uidoc Call ProcessQuerysave
On Event Postopen From m_uidoc Call ProcessPostopen

End Sub

Sub Postopen(Source As Notesuidocument)
End Sub

Sub Querysave(Source As Notesuidocument, Continue As Variant)
End Sub

End Class

Although this class is created using composition, it also forms the basis for
our inheritance example because the next two classes we create will
inherit from it.

The theory of inheritance
Before we deal with the nuts and bolts of inheritance, let’s take a brief look
at the theory first. In OO books, inheritance is often called an “is a”
relationship. A car is type of vehicle, a Porsche is a type of car, and so
forth. Bananas, apples, and cherries are all types of fruit. Here’s another
traditional OO diagram.

© Copyright 2001 Iris Associates, Inc. 8

Notes.net: Using the object-oriented features of LotusScript "Iris Today" webzine at http://www.notes.net

Subclasses are classes that inherit from another class. Subclasses are
also known as derived classes or child classes. A subclass may inherit
from another subclass. In the diagram above, jeep and tow truck are both
subclasses that inherit from another subclass. Base classes are simply
those classes that don’t inherit from other classes. ListItem, BetterList, and
EnhancedUIDoc are all base classes. It makes no difference that
BetterList and EnhancedUIDoc make use of composition and thus contain
other classes. Neither inherits from another class and that makes them
base classes. In the diagram, vehicle is the only base class.

If you’re like me, you’re probably nodding your head at this point and
saying, “Well, this inheritance stuff sounds impressive, but what can I do
with it?” With your code organized into classes, you can easily create new
classes based on existing ones. The only code you’ll need to write for the
new class is that which adds the capability the parent class lacks. You’ll
make future development faster and easier. Plus, you’ll eliminate situations
where code might be duplicated. Now let’s look at how to put theory into
practice.

Creating classes using inheritance
We could simply put only the capabilities we want in every form into
EnhancedUIDoc and leave it at that. We’ve derived significant benefits
already. We can do even better though. By making use of inheritance, we
can quickly create new classes that can enhance, change, or override the
behavior of existing classes.

One way to do this is to use EnhancedUIDoc as an abstract base class.
Abstract classes don’t exist to be created (or, in the more formal OO lingo,
“instantiated”). They only exist to be used as a base class from which other
classes will inherit. There’s no simple way to force a class to be abstract in
LotusScript (that is, we can’t prevent someone from using it directly), but
we don’t really need to force it. We could use EnhancedUIDoc as the
object created when creating a form, and that would work just fine; but we
can choose to treat it as abstract, and I believe there is an advantage to
that. I find that using one abstract base class plus a specific subclass for
each form that needs to inherit common behavior is a more flexible
scheme. By doing this, any code customized for one form is isolated in a
subclass associated with that form. Similarly, the code intended for all
forms is isolated in the base class.

Now we have a class that extends NotesUIDocument. How and where do
we create this class so that it points to correct UI document? Remember,
this needs to be done before the various startup events occur so that we
can override these events when they do occur. We do this in the form’s
Queryopen event. It’s not possible to do this any earlier since the

© Copyright 2001 Iris Associates, Inc. 9

Notes.net: Using the object-oriented features of LotusScript "Iris Today" webzine at http://www.notes.net

NotesUIWorkspace.CurrentDocument property doesn’t return a useable
value before this event.

Sub Queryopen(Source As Notesuidocument, Mode As Integer, Isnewdoc
As Variant, Continue As Variant)

Set g_CurrUIDoc = New EnhancedUIDoc(Source)

End Sub

The global variable g_CurrrUIDoc is being used to keep track of the object
belonging to the currently visible document window.

Here are two classes that inherit from EnhancedUIDoc. In the first line, we
declare that class SubClassUIDoc inherits from EnhancedUIDoc by using
the As keyword. The class listed after the As is the class from which new
class will inherit. These are both subclasses of EnhancedUIDoc since they
both inherit from it. One of them, SubclassUIDoc, changes nothing though
it does contain a print statement to help illustrate the order in which
methods are called. The other, NewEventUIDoc, contains code that will
give it features not found in EnhancedUIDoc. Documents created using
NewEventUIDoc will appear with rulers and horizontal scroll bars showing.
These new features are added in the ProcessSpecialPostopen method.
NewEventUIDoc also turns off the field tracking capabilities we put in its
base class, NotesUIDocument. It does this by means of the “on event …
remove” statement.

Class SubclassUIdoc As EnhancedUIDoc

Sub new (uid As NotesUIDocument)
Print ("SubclassUIDoc - sub new")

End Sub

End Class

Class NewEventUIDoc As EnhancedUIDoc

Sub new (uid As NotesUIDocument)
Print ("NewEventUIDoc - sub new")
On Event QuerySave From m_uidoc Remove
On Event Querysave From m_uidoc Call
ProcessSpecialQuerysave
On Event Postopen From m_uidoc Call ProcessSpecialPostopen

End Sub

Sub ProcessSpecialQuerySave (Source As Notesuidocument,
Continue As Variant)

Print ("NewEventUIDoc - ProcessSpecialQuerySave")
End Sub

Sub ProcessSpecialPostOpen(Source As NotesUIDocument)
m_uidoc.HorzScrollBar = True
m_uidoc.Ruler = True

End Sub

End Class

Note the “On Event QuerySave From m_uidoc Remove” statement.
Without that line, we would see a call to ProcessSpecialQuerySave and
ProcessQuerysave prior to saving an object of class NewEventUIDoc. The
LotusScript documentation tells us that the order of calling multiple event

© Copyright 2001 Iris Associates, Inc. 10

Notes.net: Using the object-oriented features of LotusScript "Iris Today" webzine at http://www.notes.net

subroutines for an object is undefined. There’s no way to know with
certainty which one will be called first. Be careful not to write code that
assumes that one subroutine for a particular event will be called before
another. In this example, we’ve avoided the problem altogether by turning
off the original subroutine.

Now that we’ve created these two subclasses, we have to consider a new
issue. What happens with the constructors in the subclass and the base
class when a subclass object is created? When we create a subclass
object, making a call to the Sub New of the subclass also causes a call to
be made to the Sub New of the class it inherits from. In other words, the
base class Sub New gets called first, followed by subclass’s Sub New. The
reverse happens when a destructor is called. The calls are made first to
the destructor of the subclass and then on down to the base class
destructor. There are print statements in the code to help illustrate this. To
see this, you can download the sample database from the Iris Sandbox,
create a SubclassUIDoc document, and observe the order in which the
constructors are called.

Constructors and destructors are the only class methods that automatically
call methods of the classes they inherit from. Constructors may take
arguments. If they do, there are two possible subclass situations. If the
subclass arguments match the parent class arguments exactly, all is well.
If they don’t match, the subclass constructor must declare which
arguments will be passed to the parent’s constructor. See the Property and
Method Overriding topic of the Domino R5 Designer Help for a more
complete description on how to do this. Destructors do not take arguments

Overriding properties and methods
Subclasses can override the properties and methods of their parent
classes. This can be done by defining a property or method in the subclass
with the same name as the one in the parent class. The parameter lists
must be identical for both items. Why would we want to do this? One
example might be a base class and a subclass that both have a
RestoreDefaultValues method. Each class needs this capability, but each
has a different set of default values to restore. What if a subclass needs to
do something that its base class can already do? We already know that
duplicating the code is a bad idea. A subclass can call any of the
overridden methods or properties of any of the classes it inherits from by
using dotdot (..) notation. Dotdot notation is only valid within classes. See
the Domino R5 Designer Help entry on dotdot notation for a more
complete description on how to do this.

Objects and memory management
Though LotusScript handles most memory management issues for you,
you’ll need to pay more attention to it when you deal with objects,
especially if you store objects in lists. Why is this? Every object you create
takes a certain amount of memory. If you create a large number of objects
without ever getting rid of ones you’re done with, your computer will bog
down and may even crash. An object created within the scope of one
function would get cleaned up automatically when the function ended, but
an object placed in a list will not be freed until the list itself is freed up. This
might not be till the database in question is closed, if there are any global
variables referring to the list object.

Given that there are restrictions on the number of documents that can be
open at once and that there are usually fewer than several hundred fields
in a document, we’re not likely to run into this problem with
EnhancedUIDoc. On the other hand, an application that tried to create a
complex object for each document in a database and store each of these
objects in a list might very well run low on memory when the number of
documents in the database exceeded the computer’s ability to store

© Copyright 2001 Iris Associates, Inc. 11

Notes.net: Using the object-oriented features of LotusScript "Iris Today" webzine at http://www.notes.net

objects representing them.

How do we avoid this problem? Be sure to delete objects when you’re
done with them. Also, design your code so that you don’t need an
excessive number of objects available at one time. The Erase statement
can be used to remove all objects from a list; it can also be used to remove
just one object from the list.

Limitations
If you’re going to start using objects yourself, there are a few tips you
should know before you begin. Objects must be defined in the declarations
section of a script, and there is a 64k limit on the amount of code that can
be placed in a section. If you create lots of classes, they may not all fit into
one script library. If you see this message “Current operation aborted
because buffer is full” when working on or when saving your script library,
you’ve reached the 64k limit. Consider splitting an oversize script library
into multiple script libraries with related classes grouped together.

At times, working with events can be tricky. Not all built-in Notes objects
are available in all events. In particular, you won’t be able to access a
NotesUIDocument object before the form’s Queryopen event. Also, the
Notes back-end document for a document being created,
NotesUIDocument.Document, is not available until the Postopen event.

Also, keep in mind that LotusScript compiles differently in R4 than in R5. In
R4, if you try to save a script library that defines a class A and class B
where class A contains an object of class B and class A is defined before
class B, you’ll get the error message “Class or type name not found.” The
same code will save correctly in R5. If you’re developing for both versions
of Notes, be aware of this situation.

Finally, a word of warning: Don’t rush out and put all of your code into
classes just to be able to flaunt the phrase object-oriented. Remember that
just because code is object-oriented doesn’t make it good code. It’s
perfectly possible to write bad OO code. In particular, it can be difficult to
figure out code that uses more than three or four levels of inheritance. Do
make use of classes when and where they make sense. As with any code,
good comments and documentation will make your OO code easier to use
and maintain.

Conclusion
We’ve examined five LotusScript classes ranging from simple to more
complex. They were built using two main techniques: composition and
inheritance. We’ve seen how composition can be used to extend the
built-in Notes objects, which can’t be extended by inheritance. We’ve used
inheritance to share a basic set of behaviors between forms while allowing
for specific enhancements and exceptions. We’ve also seen how to
override events and reviewed error handling, memory management, and
limitations on classes in LotusScript.

Taken altogether, we’ve demonstrated how LotusScript’s object-oriented
features can add new capabilities to LotusScript and how classes can help
to avoid duplicated code. I hope the examples given here will inspire you to
create some useful classes of your own.

Additional resources
Code
You can download a database containing the code discussed in this article
from the Iris Sandbox.

Domino R5 Designer Help
Domino R5 Designer Help has some useful entries on objects. You have

© Copyright 2001 Iris Associates, Inc. 12

Notes.net: Using the object-oriented features of LotusScript "Iris Today" webzine at http://www.notes.net

to know where to look though. Try the "User-Defined Data Types and
Classes" subsection of the "LotusScript Language" topic as a starting
point.

You also may find the following topics of the "Property and method
overriding" topic of particular interest:

"Extending Sub New for derived classes"l
"Calling Sub New and Sub Delete"l
"Accessing base-class properties and methods"l
"Using object references as arguments and return values"l
"Using the Set statement with derived class objects"l

Books
Probably the two best-known books dealing with object-oriented
programming are Object-Oriented Analysis and Design With Applications,
by Grady Booch, Addison-Wesley, 1994, and Design Patterns: Elements
of Reusable Object-Oriented Software, by Eric Gamma, Richard Helm,
Ralph Johnson, and John Vlissides, Addison-Wesley, 1995. The Design
Patterns book looks at commonly used combinations of classes.

Web sites
Patterns are frequently used combinations of classes. Here are two Web
sites that can help you learn more about them. The Patterns FAQ Web
site includes answers to frequently asked questions. The Patterns Home
Page Web site includes tutorials.

ACKNOWLEDGEMENTS
I’m grateful to Richard Schwartz for numerous suggestions on organizing and
improving the article. I’d also like to thank Nik Shenoy for his permission to base
some of my work on his. The UIDocument class he described in the 1999 Lotus
Business Partner Tech Forum database inspired EnhancedUIDoc.

ABOUT BRUCE PERRY
Bruce is an independent consultant, currently working with RHS Consulting on some
joint projects involving LotusScript and C++ coding. He has been working with Notes
for three years. Much of that time, he worked for eVelocity Corp., a B2B Application
Service Provider, where they use object-oriented LotusScript classes to work with
large Notes databases—some with over one million documents. He’s been a
software developer since 1982 and has worked with a variety of object-oriented
languages such as C++, Java, and Borland Delphi.

© Copyright 2001 Iris Associates, Inc. 13

]

The BetterList class

Public Class BetterList
Private m_list List As Variant
Private m_count As Integer

Property Get Count As Integer
Count = m_count

End Property

Public Function DeleteList
Erase m_list

End Function

Public Sub new
m_count = 0

End Sub

Sub Delete
Call Me.DeleteList

End Sub

Public Function DeleteItem(key As String) As Integer
Dim rval As Integer

'if the key is in the list, erase the object
If (Iselement(m_list(key))) Then

Erase m_list(key)
m_count = m_count-1
rval = True

Else
'if there's no such key, warn of an error
rval = False
Print "Item " & key & " not found. It could not be deleted."

End If

DeleteItem = rval
End Function

Public Function AddItem(key As String, item As ListItem) As Integer

'just add the item if the key doesn't exist
If (Not Iselement(m_List(key))) Then

Set m_list(key) = item
m_count = m_count+1

Else
'if the key does exist, erase the current object in the list
'and add the new one
Erase m_List(key)
Set m_list(key) = item

© Copyright 2001 Iris Associates, Inc. 1

Notes.net: Using the object-oriented features of LotusScript (The BetterList class sidebar)"Iris Today" webzine at http://www.notes.net

End If

End Function

Public Function GetItem(key As String) As Variant
Dim itm As ListItem
On Error ErrListItemDoesNotExist Goto NoSuchItem
Set GetItem = m_list(key)

OK:
Exit Function

NoSuchItem:
'return a value of Nothing if the key was not found
Print "List item " & key & " not found."
Set itm= Nothing
Set GetItem = itm
Resume OK

End Function

'see if there's an object in the list for a given key
Public Function IsInList(key As String) As Integer

Dim rval As Integer

If (Iselement(m_List(key))) Then
rval = True

Else
rval = False

End If

IsInList = rval
End Function

End Class

© Copyright 2001 Iris Associates, Inc. 2

]

The EnhancedUIDoc class

Class EnhancedUIDoc
Private m_uidoc As NotesUIDocument
Private m_uiw As NotesUIWorkspace
Private m_origvalues As BetterList
Private m_doctype As String

Sub ProcessPostopen(Source As NotesUIDocument)
Dim doc As NotesDocument
Dim ltm As ListItem

Print ("EnhancedUIDoc - ProcessPostopen")

Set doc = m_uidoc.document
Forall i In doc.Items

Set ltm = New ListItem(i.Name, i.Values(0))
Call m_origvalues.AddItem(i.Name, ltm)

End Forall

End Sub

Sub ProcessQuerysave(Source As Notesuidocument, Continue As Variant)
Dim doc As NotesDocument
Dim ltm As ListItem
Dim rval As Integer
Dim v As Variant

Print ("EnhancedUIDoc - ProcessQuerysave")
rval = continue

Set doc = m_uidoc.document
Forall i In doc.Items

Set v = m_origvalues.GetItem(i.Name)

If (Not Isnull(v)) Then 'make sure there's an item to compare it to
Set ltm = v
If i.Values(0) <> ltm.value Then

Print "Item " & i.Name & " new value = " & i.Values(0)
rval = True

Else
Print "Item " & i.Name & " not changed."

End If
Else

Print "Item " & i.Name & " not found."
End If

End Forall

Continue = rval

© Copyright 2001 Iris Associates, Inc. 1

Notes.net: Using the object-oriented features of LotusScript (The EnhancedUIDoc class)"Iris Today" webzine at http://www.notes.net

End Sub

Sub new (uid As NotesUIDocument)
Print ("EnhancedUIDoc - sub new")

Set m_uiw = g_wks
Set m_origvalues = New BetterList
Set m_uidoc = uid

On Event Querysave From m_uidoc Call ProcessQuerysave
On Event Postopen From m_uidoc Call ProcessPostopen

End Sub

Sub Postopen(Source As Notesuidocument)
End Sub

Sub Querysave(Source As Notesuidocument, Continue As Variant)
End Sub

End Class

© Copyright 2001 Iris Associates, Inc. 2

