
by
Wendi
Pohs

Level: Intermediate
Works with: Discovery Server
Updated: 02-Jan-2003

Fans of Lotus Discovery Server use it to collect, organize, and search for data from a variety of data sources.
Discovery Server gathers data from these sources with a set of collectors, called spiders; administrators enable one
spider for each source type. Spiders collect both unstructured and structured data from the documents they crawl.
Unstructured data is usually the body or text of a document. Structured data is information contained in fields and
tags associated with a document, which includes data such as a document’s title, author, creation date, URL, and
descriptive keywords.

Discovery Server ships with spiders for Notes databases, Lotus QuickPlaces, Domino.Doc applications, Web sites,
files on a file system, email, and Microsoft Exchange folders. But there's also a general purpose spider, the XML
spider, that can (with a little programming effort) access data stored in a variety of legacy and Web applications. As
the following illustration shows, the XML spider gathers XML files from directories on the file system. As long as
these XML files conform to the published Discovery Server Document Type Definition (DTD), the XML spider can
use them to collect data for Discovery Server.

This article offers advice on how to use the XML spider that ships with Discovery Server. We explain the details of
the XML spider and provide two sample ways to use it. (One of these samples includes code you can download
from the Sandbox.)

This article assumes some familiarity with XML and with the Discovery Server spiders and how they work. For more
information about Discovery Server, see the LDD Today article "A preview of Lotus Discovery Server 2.0." For
detailed information on the Discovery Server spiders, see the Discovery Server Control Center Guide, which you
can download from the Documentation Library. And for more information on how to integrate with a content
management system, see the IBM Redbook Lotus Discovery Server 2.0 Deployment, Planning and Integration.

Why XML?

© Copyright IBM 1

Lotus Developer Domain: Searching legacy data using the Discovery Server XML spider
www.lotus.com/ldd/today.nsf

XML has become the lingua franca of data exchange. Application designers create elements, formats, and rules
that describe the data in their applications so that non-native applications can use them. Programmers work from
Document Type Definitions (DTDs) to understand these elements and to create XML files that can be consumed by
external applications. They can also create stylesheets (XSL files) that contain the rules for transforming XML data
into another format.

Why use the XML spider?
When designing Discovery Server, we intended it to access information from many sources. Based on our
experience accessing our own data, and by using Discovery Server internally at Lotus, we realized that while we
could develop individual spiders for each data source, we would still have less information and knowledge of these
sources than the actual application developers themselves. So we designed and built the XML spider as a generic
way for other developers to add application knowledge to a Discovery Server implementation.

We also realized that data from multiple sources tends to be inconsistent. Title fields are not always called Title and
fields containing author information are called anything from Creator to Contributor to From. Many documents
contain extemporaneous fields that describe workflow and other housekeeping information that is not necessarily
relevant to users. We imagined that content owners would use the XML spider to standardize their data as best
they could and to make it useful for Discovery Server searches.

Discovery Server XML DTD
The Discovery Server XML DTD is the published specification of the content elements, format, and rules used by
Discovery Server spider extraction processes. The XML DTD is used with the Discovery Server XML spider to
extract XML documents that are stored in a network-accessible file system. The Discovery Server XML spider
requires three types of XML files (Document, Server, and Database) and includes a DTD (Document Type
Definition) for each type. All documents from the same data repository should be outputted and grouped in a
separate directory containing the two special files called Server.xml and Database.xml.

Validating published XML against the Document Type definitions
While all Discovery Server spiders write XML to the Discovery Server work queues, only the Discovery Server XML
spider can process XML published from proprietary, or external, sources. The XML spider consumes the Published
XML files, validates them against the Discovery Server DTDs, then uses XSL transformations to produce XML to be
processed by the K-map Building, Metrics, and K-map Indexing services.

Document, Server, and Database DTDs are located in document.dtd, server.dtd, and database.dtd files
respectively and are installed in the Discovery Server's \Data\discovery spider xml directory. Externally developed
XML applications are responsible both for specifying a correct file path to the corresponding DTD and for
generating a DOCTYPE declaration for each XML file they produce, for example:

<!DOCTYPE DOCUMENT SYSTEM "\\myServer\fdrive\Lotus\DS\Data\discovery spider xml\document.dtd">

Note: For Discovery Server 2.0, HTTP URLs such as

<!DOCTYPE DOCUMENT SYSTEM "http://myServer.lotus.com/xml/document.dtd">

are not supported.

Entity Document specifications
The following table identifies which elements are required and cannot be empty, which are optional, and whether or
not multiple entries are acceptable. An element marked as mandatory should be included in each document. The
only exception from this rule is a delete request, which is a special case (see <DELETE> and <DOCUMENT>
elements for details). If information associated with a required tag is unknown or not applicable, an empty tag
should still be included to speed up processing of the document.

Element
name

Description Mandatory/
optional

Can be
empty?

Multiple
entries?

DOCUMENT The root element that contains an
<IDENTIFIER> element followed by either
a <DELETE/> tag or a set of metadata
elements.

Mandatory No No

IDENTIFIER Contains a document ID, a unique
alphanumeric string that identifies the

Mandatory No No

© Copyright IBM 2

Lotus Developer Domain: Searching legacy data using the Discovery Server XML spider
www.lotus.com/ldd/today.nsf

document. This tag has to be present for
each document and appears only once. It
cannot be empty. The <HTTPURL> or
<NATIVEURL> elements may be good
candidates for the <IDENTIFIER>.

Note: A semicolon is not a valid character
for the <IDENTIFIER>.

AUTHOR Contains the name of the person who
created the document. If the author is
unknown, the tag can be left empty. Each
<AUTHOR> element can contain only one
name, but multiple occurrences of the
element are allowed. For example, if the
authors are Paul White and Jake Black,
then the <DOCUMENT> element contains:

<AUTHOR>Paul White</AUTHOR> !

<AUTHOR>Jake Black</AUTHOR> !

Authors are used to generate affinities.

Mandatory Yes Yes

UPDATEDBY Contains the name of the person who last
modified/saved the document. This tag
follows the same rules as <AUTHOR>. In
addition, it has the added requirement that
it cannot be empty when the <AUTHOR>
tag is filled. If people who modified the
document are unknown, copy authors into
<UPDATEDBY> elements.

Mandatory Yes Yes

CREATED Contains the date/time when the document
was first created. All time/dates must be
GMT, which means the XML spider
performs no conversion. The date/time
should be presented in the
YYYY-MM-DD-HH.MM.SS format, for
example: 1999-03-30-21.19.26
Each <DOCUMENT> has to contain exactly
one <CREATED> tag, unless the document
is being deleted. This element cannot be
empty. If the creation date is unknown,
default to the current time.

Mandatory No No

LASTREAD Contains the date/time when the document
was last accessed. This tag follows the
same rules as the <CREATED> element. If
the time of the last access is unknown,
copy the <CREATED> time into this tag.

Mandatory No No

MODIFIED Contains the date/time when the document
was last modified. This tag follows the
same rules as the <CREATED> element. If
the time of the last access is unknown,
copy the <CREATED> time into this tag.

Mandatory No No

REVISIONS Contains a set of <REVISION> elements.
Only one <REVISIONS> per document is
permitted.

Mandatory No No

REVISION This child element of <REVISIONS>
contains a date/time when the document
was modified. This tag follows the same
rules as the <CREATED> element, but
multiple <REVISION> elements are
permitted. If revision information is
unknown, copy the <CREATED> time into

Mandatory No Yes

© Copyright IBM 3

Lotus Developer Domain: Searching legacy data using the Discovery Server XML spider
www.lotus.com/ldd/today.nsf

this tag.
FIELD Optional element. Reserved for future use. Optional Yes Yes
TITLE Contains the title of the document. Same

requirements as for the <SUMMARY>
element below. If omitted, Discovery Server
attempts to generate a title using document
subject, file name derived from the
<HTTPURL>/<NATIVEURL> elements, or
the first line of the document body. If
unsuccessful, Discovery Server defaults to
"[Untitled]."

Optional No No

SUBJECT Contains the subject of the document.
Same requirements as for the
<SUMMARY> element below. If subject is
omitted, Discovery Server attempts to
generate one.

Optional No No

SUMMARY Provides a short description of the
document. If present, the element should
not be empty. Only one <SUMMARY> per
document is permitted. If this tag is omitted,
Discovery Server tries to create a
summary, providing that the document is
written in a supported language. See the
list of supported languages later in this
article. Summary should be 256 characters
or shorter.

Optional No No

KEYWORDS Contains a set of <KEYWORD> elements.
This element is optional, but if present, it
should contain at least one <KEYWORD>.
Only one <KEYWORDS> element per
document is allowed. All keywords
combined should be MAX_LEN characters
or shorter, where MAX_LEN is computed
according to the formula: MAX_LEN = 256 -
(number of <KEYWORD> elements).

Optional Yes No

KEYWORD A child element of <KEYWORDS>. Same
requirements as for <SUMMARY>, except
that multiple <KEYWORD> elements are
allowed.

Optional No Yes

BODY Contains the document body. This tag can
be empty. Only one <BODY> element per
document is allowed.

Mandatory Yes No

APPLICATION Provides the name of the application that
created the document. If present, this tag
should not be empty.

Note: This setting does not affect how the
K-Map and the K-Map Editor display the
document. Non-Domino files are viewed in
the application registered by the operating
system for the document's file extension.

Mandatory No No

LANGUAGE Contains the default language of the
document represented in the two-letter ISO
639 language abbreviation followed by an
optional ISO 3166 country code. In the ISO
639/ISO 3166 convention, language names
are written in lowercase, while country
codes are written in uppercase, for
example, en-US.

Mandatory Yes No

© Copyright IBM 4

Lotus Developer Domain: Searching legacy data using the Discovery Server XML spider
www.lotus.com/ldd/today.nsf

If this tag is empty, Discovery Server
guesses the correct language by examining
the document body. This information is
used to create a document summary and a
list of keywords. Only one <LANGUAGE>
element per document is allowed.

In addition to the two-letter ISO 639
language abbreviations, use bk for Bokmal
and ny for Nynorsk.

NATIVEURL Contains the Notes or File URL of the
document, for example:

NOTES://epr.acme.com/Wsj.nsf/0/00E!

5CFF068B33B1A852569760021DDDF
?Open
file:////epracmepr/fdrive/Testfiles/fsspr/!

93sales.xls.

<NATIVEURL> is used by the K-Map and
the K-Map Editor to display the document.
If the document cannot be retrieved, the
<HTTPURL> tag is used instead. For Notes
documents, native URL is used when the
<USENOTES/> tag is present.

Optional No

HTTPURL Contains the HTTP URL of the document,
for example:

HTTP://epr.acme.com/Wsj.nsf/0/00E5CFF0
68B33B1A852569760021DDDF?OpenDoc
ument

URLs should be represented in absolute
form and be consistent with Uniform
Resource Identifiers (URI): Generic
Syntax and Semantics, RFC 2396.

Mandatory No

ACL Optional tag that contains a document's
access control list. Contains a collection of
ALLOW and DENY elements. If empty or
missing, it is assumed that everyone with
repository access can view the document.
Only one access control list per document
is permitted.

In addition to the document ACL, Discovery
Server takes into account the repository
ACL supplied in the Database.xml file. The
document is exposed to a user only if the
user is included in the repository and
document ALLOW lists and is not included
in the DENY list.

Ensure that user identities defined in
external repositories map to user identities
Discovery Server uses to grant access to
the K-map (via HTTP authentication and
user identity and password contained within
the DS Directory - Person record)

Mandatory Yes No

ALLOW This child element of <ACL> contains a
group or a user who can read the
document. This element is optional, but if

Optional No Yes

© Copyright IBM 5

Lotus Developer Domain: Searching legacy data using the Discovery Server XML spider
www.lotus.com/ldd/today.nsf

present, it should not be empty. Each
<ALLOW> element can contain only one
name or group, but multiple occurrences of
the element are allowed.

If <ALLOW> tags are not present,
Discovery Server assumes that all users
with repository access can view the
document, except for those explicitly stated
in the DENY list. NT users and groups
should be listed in the
DOMAIN/USER_NAME format. Currently,
access checking of users in external NT
domains is not supported. Names are
case-insensitive.

DENY This child element of <ACL> contains a
group or a user who is denied reader
access. Same requirements as for
<ALLOW>.

Optional No Yes

LINKS Contains a collection of <LINK> elements.
This element is optional, but if present, it
should contain at least one <LINK>. Only
one <LINKS> element per document is
allowed.

Optional No No

LINK This child element of <LINKS> describes a
link contained in the document. The URL
attribute is an address that points to the
destination anchor, that should be
represented in absolute form, and that
should be consistent with Uniform
Resource Identifiers (URI): Generic
Syntax and Semantics, RFC 2396.
Multiple occurrences of the element are
allowed.

Optional Yes Yes

USENOTES Specifies a preferred viewer for a Lotus
Notes document. If this tag is present, the
document opens in a new Lotus Notes
window. If the Notes client is not available,
the default Internet browser becomes the
fallback viewer. If the tag is omitted, the
document is displayed in a new browser
window. This element is always empty.

Optional Yes No

INCLUDE Optional tag. Only one <INCLUDE> tag per
document is allowed. If this element is
present, Discovery Server merges the
included file and the container. The
FILEPATH attribute should not be empty.
The resulting document is registered with
the Discovery Server. The merge happens
according to the following rules:

Always use text (document body), !

keywords, and summary from the
included file.
Use container's metadata. If container !

is missing an author or title, then get
omitted information from the included
file.
Use container's ACLs. !

Attribute:
FILEPATH - location of the attached !

file.

Optional Yes No

© Copyright IBM 6

Lotus Developer Domain: Searching legacy data using the Discovery Server XML spider
www.lotus.com/ldd/today.nsf

ATTACHMEN
T

Optional tag. If this element is present, the
attributes should not be empty. For multiple
attachments in a document, Discovery
Server processes the attached file in a
manner similar to how attachments are
processed for Domino. Attachments are
registered with Discovery Server
independently from the container. Rules
used to process attachment metadata:

If the attachment is missing an author, !

title, summary, or keywords, then get
omitted metadata from the container.
Combine the title/subject of the !

container with the attachment name.
For example, if container's title is
Container1, and attachment is named
file1.doc, the new title is
Container1(attachment - file1.doc).
Use container's ACLs.!

Attributes:
FILEPATH - Specifies the location of !

the attached file
IDENTIFIER - Contains a unique ID for !

the attachment
NATIVEURL - Specifies the Notes or !

File URL of the attachment
HTTPURL - Specifies the HTTP URL !

of the attachment
USENOTES - Specifies a preferred !

viewer for the attachment

Optional Yes Yes

DELETE Used to remove previously processed
documents from the data repository. If this
tag is present, the document is deleted. This
element is always empty.

Note: If the document is new and has not
been registered during a previous run of the
spider, a message is logged.

Database Document specifications
The following table identifies which elements are required and cannot be empty, which are optional, and whether or
not multiple entries are acceptable. An element marked as mandatory always should be included. The DATABASE
element must be stored in a special file called Database.xml. If Database.xml is missing, the XML spider logs an
error and terminates spidering.

Element
name

Description Optional/
mandatory

Can be
empty?

Multiple
entries?

DATABASE The root element that contains
<DATABASEID> and <ACL> elements.

Mandatory No No

DATABASEID Contains a data repository ID as an
alphanumeric string that identifies the
repository. This tag is required, can appear
only once, and cannot be empty.

On the initial traversal, the ID should be
new and unique. In other words, there
should be no other data repository
registered with this ID. On the following
traversals, the ID should not be changed.

Mandatory No No

© Copyright IBM 7

Lotus Developer Domain: Searching legacy data using the Discovery Server XML spider
www.lotus.com/ldd/today.nsf

Note: The semicolon is not a valid
character for the <DATABASEID>.

NATIVEURL Contains the Notes or File URL for the
repository. <NATIVEURL> is used by the
K-map and the K-map Editor to display the
repository. If the repository cannot be
retrieved, <HTTPURL> is utilized instead.
For Notes databases, <NATIVEURL> is
used when the <USENOTES/> tag is
present.

Mandatory No No

HTTPURL Contains the HTTP URL for the repository.
URLs should be represented in absolute
form and be consistent with Uniform
Resource Identifiers (URI):Generic
Syntax and Semantics, RFC 2396.

Mandatory No No

SUMMARY Provides a short description of the
repository. If present, the element should
not be empty. Only one <SUMMARY> tag
per database is permitted. The summary
should be 256 characters or shorter.

Optional No No

OWNER Contains the repository owner's name. If
present, the element should not be empty.
Only one <OWNER> tag per database is
permitted.

Optional No No

ACL Contains the repository access control list.
Contains a collection of <ALLOW> and
<DENY> elements. If not present or if
empty, it is assumed that everyone has
repository access rights. Only one access
control list per repository is permitted.

In addition to the repository ACL, Discovery
Server takes into account ACLs provided
for each individual document. You need to
ensure that user identities defined in
external repositories map to user identities
that Discovery Server uses to grant access
to the K-map (via HTTP authentication and
user identity and password contained within
the Discovery Server Directory - Person
record).

Attributes:
DOMAINTYPE - Set to WindowsNT or !

Domino
DEFAULTDOMAIN - This default name !

is used if <ALLOW> or <DENY>
elements lack domain names and only
contain user names (for example,
<ALLOW>User1</ALLOW>).
The Authentication part of Discovery
Server must know about this domain to
handle it.

Optional Yes No

ALLOW This child element of <ACL> contains a
group or a user who can read documents in
the repository. This element is optional, but
if present, it should not be empty.

Each <ALLOW> element can contain only

Optional No Yes

© Copyright IBM 8

Lotus Developer Domain: Searching legacy data using the Discovery Server XML spider
www.lotus.com/ldd/today.nsf

one name or group, but multiple
occurrences of the element are allowed. If
<ALLOW> tags are not present, we
assume that all users are granted
repository access rights, except for those
explicitly stated in the <DENY> list. NT
users and groups should be listed in the
DOMAIN/USER_NAME format. Currently,
access checking of users in external NT
domains is not supported. Names are
case-insensitive.

DENY This child element of <ACL> contains a
group or a user who is denied reader
access. This element is optional. Same
requirements as for <ALLOW>.

Optional No Yes

Server Document Specifications
The following table identifies which elements are required and cannot be empty, which are optional, and whether or
not multiple entries are acceptable. An element marked as mandatory always should be included.

Element
name

Description Optional/
mandatory

Can be
empty?

Multiple
entries?

SERVER The root element that contains a
<SERVERID>. <SERVER> must be stored
in a special file called Server.xml.

Mandatory No No

SERVERID Contains a server ID as a unique
alphanumeric string. This tag is required,
can appear only once, and cannot be
empty. On the following traversals, the ID
should not be changed.

Mandatory No No

Sample applications for XML spider integration
Two examples of the kinds of applications that you can integrate with the XML spider are:

Content management systems!

Web sites!

This section discusses these applications and how you can integrate them with the XML spider.

Content management systems
Because the Discovery Server is optimized for finding text documents, it's often a good idea to integrate it with an
existing content management system. Content management systems often use relational database structures to
maintain metadata, document security, and version control. They can also use the server's file system to store the
content files (for example, MS Word documents). Content management systems also provide their own user
interface, optimized for the task of creating and maintaining documents. It is unlikely that a Discovery Server native
spider will have direct access to the files managed by the document management system. If Discovery Server
directly spidered the file system for the document files, it would never see the metadata stored in the relational
database. To access the relevant metadata, you can transform the document file and the metadata into a single
XML file that can then be spidered by the Discovery Server XML spider.

In this scenario, you can write an extract program that connects to the content management system, generally
using a published API from the content management system vendor. This program reads the relevant metadata
and creates a new XML file for each document. In addition to including any required metadata in the XML file, you
can reference the document file in the XML file, and the XML spider will collect the document file as well as use the
included metadata. In situations where it is not possible for the Discovery Server spider to access the document file
directly in its original location (usually due to security policies) the extraction program has to place a copy of the
document file in a spider-accessible directory as a temporary copy for the spider to use. (Note that this temporary
copy is only used by the spider and that K-map users will access the document file in its original location, using any
required authentication.) For more detailed information on how to integrate with a content management system, see

© Copyright IBM 9

Lotus Developer Domain: Searching legacy data using the Discovery Server XML spider
www.lotus.com/ldd/today.nsf

the IBM Redbook Lotus Discovery Server 2.0 Deployment, Planning and Integration.

Web sites
The XML spider can also be used with existing data on the Web. Indexing and abstracting Web sites like the
National Library of Medicine's PubMed provide utilities that allow developers to select certain fields to download
data in XML format. Developers can use this data in a Discovery Server implementation by writing an XSL
transformation that conforms to the published DTD. After the transformation, they place these files in a directory on
the file system for the XML spider to use. In this scenario, Discovery Server users can access the relevant medical
citations along with internal information.

Below is a sample XSL transformation of PubMed data. (You can download this sample from the Sandbox.) In this
sample, the developer knew the format of the XML he downloaded from the PubMed Web site. Using the Discovery
Server published DTD as a guide, he created the following XSL transformation. In it, he created a series of
templates that map the PubMed data to the elements specified in the Discovery Server's document.dtd file.

The process initiates here:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes" doctype-system="document.dtd"/>

<xsl:template match="@*|node()">
<xsl:copy>

<xsl:apply-templates select="@*|node()"/>
</xsl:copy>

</xsl:template>

<!-- The root of the article is PubmedArticle -->
<xsl:template match="PubmedArticle">

<xsl:element name="DOCUMENT">
<xsl:apply-templates select="@*|node()"/>

</xsl:element>
</xsl:template>

This next section performs the transformation, using the templates defined later on in the routine. The templates
map the PubMed XML elements to the XML elements in the Discovery Server's document.dtd file:

<!-- Main line routine calls all required templates, completes default sections
 as required by the lotus dtd. -->

<xsl:template match="MedlineCitation">
<xsl:element name="IDENTIFIER">

<xsl:text>MedlineID:</xsl:text>
<xsl:value-of select="MedlineID"/>
<xsl:text> PMID:</xsl:text>
<xsl:value-of select="PMID"/>

</xsl:element>
<xsl:apply-templates select="Article/AuthorList"/>
<UPDATEDBY></UPDATEDBY>
<xsl:apply-templates select="DateCreated"/>
<LASTREAD></LASTREAD>
<xsl:choose>

<xsl:when test="DateRevised">
<xsl:apply-templates select="DateRevised"/>

</xsl:when>
<xsl:otherwise>

<MODIFIED></MODIFIED>
</xsl:otherwise>

</xsl:choose>
<REVISIONS></REVISIONS>
<xsl:apply-templates select="Article/ArticleTitle"/>
<KEYWORDS>
<xsl:apply-templates select="MeshHeadingList"/>
<xsl:apply-templates select="ChemicalList"/>

© Copyright IBM 10

Lotus Developer Domain: Searching legacy data using the Discovery Server XML spider
www.lotus.com/ldd/today.nsf

</KEYWORDS>
<xsl:apply-templates select="Article/Abstract"/>
<APPLICATION></APPLICATION>
<LANGUAGE></LANGUAGE>
<NATIVEURL></NATIVEURL>
<HTTPURL></HTTPURL>
<ACL></ACL>

</xsl:template>

This next section defines the templates. This developer and his users have searched the external PubMed
database before, so they know which fields are relevant to their work and which fields they would like to see when
they search both internal and external sources using the Discovery Server. The developer used the PubMed DTD,
also available on the PubMed Web site, as a guide:

<!-- Following are templates for handling specfic transformations -->

<xsl:template match="Article">
<xsl:apply-templates select="AuthorList"/>
<xsl:apply-templates select="ArticleTitle"/>
<xsl:apply-templates select="Abstract"/>

</xsl:template>

<xsl:template match="AuthorList">
<xsl:apply-templates select="Author"/>

</xsl:template>
<xsl:template match="Author">

<xsl:element name="AUTHOR">
<xsl:value-of select="LastName"/>
<xsl:text>,</xsl:text>
<xsl:value-of select="ForeName"/>
<xsl:text> </xsl:text>
<xsl:value-of select="Initials"/>

</xsl:element>
<!--<Author name="{LastName},{ForeName} {Initials}"/> -->

</xsl:template>

<xsl:template match="Abstract">
<xsl:apply-templates select="AbstractText"/>

</xsl:template>

<xsl:template match="DateCreated">
<xsl:element name="CREATED">

<xsl:value-of select="Year"/>
<xsl:text>-</xsl:text>
<xsl:value-of select="Month"/>
<xsl:text>-</xsl:text>
<xsl:value-of select="Day"/>

</xsl:element>
</xsl:template>
<xsl:template match="DateRevised">

<xsl:element name="MODIFIED">
<xsl:value-of select="Year"/>
<xsl:text>-</xsl:text>
<xsl:value-of select="Month"/>
<xsl:text>-</xsl:text>
<xsl:value-of select="Day"/>

</xsl:element>
</xsl:template>

<xsl:template match="AbstractText">
<BODY TYPE="TEXT">

<xsl:value-of select="." />
</BODY>

© Copyright IBM 11

Lotus Developer Domain: Searching legacy data using the Discovery Server XML spider
www.lotus.com/ldd/today.nsf

</xsl:template>

<xsl:template match="ArticleTitle">
<xsl:element name="TITLE">

<xsl:value-of select="." />
</xsl:element>

</xsl:template>

<xsl:template match="MeshHeadingList">
<xsl:apply-templates select="MeshHeading"/>

</xsl:template>
<xsl:template match="MeshHeading">

<xsl:apply-templates select="DescriptorName"/>
<xsl:apply-templates select="QualiferName"/>

</xsl:template>

<xsl:template match="DescriptorName">
<xsl:element name="KEYWORD">

<xsl:value-of select="." />
</xsl:element>

</xsl:template>
<xsl:template match="QualifierName">

<xsl:element name="KEYWORD">
<xsl:value-of select="." />

</xsl:element>
</xsl:template>

<xsl:template match="ChemicalList">
<xsl:apply-templates select="Chemical"/>

</xsl:template>
<xsl:template match="Chemical">

<xsl:apply-templates select="NameOfSubstance"/>
</xsl:template>

<xsl:template match="NameOfSubstance">
<xsl:element name="KEYWORD">

<xsl:value-of select="." />
</xsl:element>

</xsl:template>

<!-- default templates no transfformatio required -->
<xsl:template match="PubmedData"/>
<xsl:template match="CitationSubset"/>
<xsl:template match="MedlineJournalInfo"/>
<xsl:template match="DateCompleted"/>
<xsl:template match="MedlineID"/>
<xsl:template match="PMID"/>

</xsl:stylesheet>

The following is a sample of the contents of an output XML file this program writes to the local file system:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE DOCUMENT SYSTEM "document.dtd">
<DOCUMENT>
<IDENTIFIER>MedlineID:21200508 PMID:11304842</IDENTIFIER>
<AUTHOR>Baglin,T P TP</AUTHOR>
<UPDATEDBY/>
<CREATED>2001-04-17</CREATED>
<LASTREAD/>
<MODIFIED>2001-11-28</MODIFIED>
<REVISIONS/>
<TITLE>Heparin induced thrombocytopenia thrombosis (HIT/T) syndrome: diagnosis and treatment.</TITLE>
<KEYWORDS>

© Copyright IBM 12

Lotus Developer Domain: Searching legacy data using the Discovery Server XML spider
www.lotus.com/ldd/today.nsf

<KEYWORD>Anticoagulants</KEYWORD>
<KEYWORD>Heparin</KEYWORD>
<KEYWORD>Hirudin</KEYWORD>
<KEYWORD>Hirudin Therapy</KEYWORD>
<KEYWORD>Human</KEYWORD>
<KEYWORD>Pipecolic Acids</KEYWORD>
<KEYWORD>Platelet Count</KEYWORD>
<KEYWORD>Recombinant Proteins</KEYWORD>
<KEYWORD>Thrombocytopenia</KEYWORD>
<KEYWORD>Thrombosis</KEYWORD>
<KEYWORD>Anticoagulants</KEYWORD>
<KEYWORD>Pipecolic Acids</KEYWORD>
<KEYWORD>Recombinant Proteins</KEYWORD>
<KEYWORD>lepirudin</KEYWORD>
<KEYWORD>Argatroban</KEYWORD>
<KEYWORD>Hirudin</KEYWORD>
<KEYWORD>Heparin</KEYWORD>
</KEYWORDS>
<BODY TYPE="TEXT">Heparin induced thrombocytopenia thrombosis (HIT/T) is associated with a high morbidity
and mortality. Diagnosis is essentially clinical and negative results of laboratory assays do not exclude the
diagnosis. Treatment involves stopping all heparin immediately and giving an alternative thrombin inhibitor. The
adoption of low molecular weight heparins is one reason for the reduced incidence of this disease in recent
years.</BODY>
<APPLICATION/>
<LANGUAGE/>
<NATIVEURL/>
<HTTPURL/>
<ACL/>

</DOCUMENT>

After all the XML files have been extracted and transformed, a Discovery Server administrator can specify a data
repository definition form that instructs the XML spider where to find the particular XML content. Unlike other
spiders, there's no need to specify field mapping for XML repositories because the mapping is already defined in
the XML. As with other repository types, the data repository form enables the administrator to schedule when the
XML files should be queued for processing by the Discovery Server services. Unlike the File System spider, which
always leaves repository files intact, the XML spider manages data according to an After Processing setting that
appears on the Data Repository form. Selecting either the Truncate or Remove option saves space by compressing
or removing the data after it's been processed by the XML spider.

Access considerations for the XML spider
During its initial spider run, the XML spider looks for two special files: Server.xml and Database.xml, which help it
distinguish between published and unpublished XML files. These files are processed prior to all other documents.
Server and database IDs extracted from these files are written to the repository's context. This is the only time when
database and server IDs are processed. During the subsequent processing, the XML spider picks up ACL changes
from Database.xml, but does not update database or server IDs.

The XML spider attempts to read files of any size, as if the No Maximum option were selected, so no special file
size parameters need to be specified on the Spider Settings form.

Note: The XML spider terminates spidering of a repository if it can't access DTD or XSL files located in the
Data\discovery spider xml directory.

Unlike the File System spider, the XML spider does not use the WindowsNT ACLs associated with the spidered
directory. It uses the ACLs supplied in the XML file instead. To use ACLs in the XML spider:

Include an <ACL> element in the Database.xml file.!

Include at least one <ALLOW> element for database ACL.!

Use an empty <ALLOW> tag to allow full access for all users.!

Conclusion
By using the XML spider, an organization can open up data content that might not normally be available to
Discovery Server end users. An application developer's simple investment of time can open up valuable and useful

© Copyright IBM 13

Lotus Developer Domain: Searching legacy data using the Discovery Server XML spider
www.lotus.com/ldd/today.nsf

content that would otherwise remain inaccessible to the people who need it.

ABOUT THE AUTHOR
Wendi Pohs is a principal taxonomy specialist on the Discovery Server team and the author of a book about knowledge
management methodologies, Practical Knowledge Management: The Lotus Knowledge Discovery System, published by IBM
Press. Wendi joined Lotus Development Corporation in 1996 and has worked on various projects as a spec writer, online help
designer, and user assistance manager. Prior to joining Lotus, Wendi worked at the American Mathematical Society and at Digital
Equipment Corporation. Wendi received her BA and MILS degrees from the University of Michigan.

© Copyright IBM 14

