Notes.net: Meet the developer: Damien Katz on the Rnext formula language

.net

Meet the t-le'.'eiuper:

Damien Katz on the
Rnext formula language

Interview by
Michelle
Mahoney

L AN
Level: All

Works with: Domino Rnext
Updated: 07/02/2001
L AN

© Copyright 2001 Iris Associates, Inc.

e - +

WY \iris Today

P -

I\ k
“du e

The bulk of the enhancements made to the formula language for Rnext are
attributable to the work of Damien Katz, a software developer at Iris. Perhaps
it is his experience as a Notes and Domino consultant prior to joining Iris in
1997 that best explains why he has been so successful at delivering the
functionality that is most in demand from Notes developers; he approaches
development from a user's perspective. Here's what he had to say about the
formula language enhancements for Rnext.

We also invite you to read the companion article, Enhancements to the
formula language in Rnext, where changes for Notes/Domino Rnext are
explained in detail.

What did you have to do to incorporate the new looping and list
manipulation functionality that is present in Rnext?

We had to rewrite the compute engine, which is the runtime interpreter of the
formula language.

Rewrite it? Why was such a drastic change necessary?

The old engine, as it existed, was very simple. It was developed by Ray Ozzie
years ago and was based on now outdated technology. We couldn't
incorporate looping, nor many of the other enhancements users were
requesting, until the runtime language was rebuilt from the ground up. The old
architecture did not allow for it. The formula language compiled format is
based on Reverse Polish Notation. This notation parses an expression using
a set order of evaluation, and uses a stack to store and retrieve the values it
computes. Here's how it works. If you have the following formula:

@Q+n)y*2

it is compiled into a machine readable Reverse Polish Notation format, similar
to this:

1n+2*

The old engine begins to evaluate the expression left to right, so it places the
1 on the stack, then determines that the n—which let's say, is a field in the
document—equals 3, and places the 3 on the stack. When it hits the plus
sign, it goes back to the stack for two values and adds them, placing the
result (4) on the stack. It then places the 2 on the stack and at the
multiplication sign, retrieves the 4 and 2 from the stack and multiplies them.
This process is somewhat inefficient and inflexible. The old engine had to do
some interesting hacks to get @If to work. For Rnext, we have incorporated
object-oriented programming into the engine. Now, the formula is instead
transformed at runtime into an expression tree, as follows:

a

+ 2

1

1 I

Due to the tree structure, the values are easier to store and retrieve and

Notes.net: Meet the developer: Damien Katz on the Rnext formula language "Iris Today" webzine at http://www.notes.net

looping is possible. The tree still recognizes the order of evaluation; its
furthest branches are executed first. In computer science, this is called a
post-order traversal. In this example, the n is evaluated; it is added to 1, and
the 4 and 2 are multiplied last.

What were your objectives in rewriting the formula language?
The primary goal was, and continues to be, to maximize performance gains.
So far, we have done this in a number of ways.

First, there's caching results. This increases performance because you can
cache the results of expressions that only need to be evaluated once. With
the old architecture, no matter what the expression type was, you had to
reevaluate it for each document in a view.

Next, we perform "lazy evaluations." This means that you can set aside a
portion of a formula that does not need to be evaluated in a specific order and
evaluate it only when its result is needed. Any @function that only operates
on its direct arguments and does not rely on state information from anywhere
else (@UpperCase, for example) can be lazily evaluated. @DbLookup and
@Set cannot be lazily evaluated because they read from or write to the state
of other, external variables. It is possible to differentiate between these two
types of @functions and evaluate them differently because of the new tree
structure of the formula language. All this is completely transparent to the end
user, the formula programmer.

Also, treating internal data types as objects. The internal types in the
language used to be concrete data types. Each @function knew the internal
data structure of each item passed to it. So, for example, an @function would
have to do pointer arithmetic to get at element n in a text list. Now that the
internal types are object-oriented, the same @function does not need to use
pointer arithmetic but instead, can ask the text list object for the value of its n
th element. The new architecture allows for internals that have several
different formats, making it easier to construct and manipulate the structures
efficiently.

And finally, eliminating a lot of the silly limitations. For example, the new
architecture rids you of the inability to assign a value to the same temporary
variable twice without using @Set or to use the assignment operator inside
another expression, like an @If expression. Together with the bigger things,
like no looping and the 64k limit—all these limitations are now gone.

Are you seeing the fruits of all this labor?

Yes. In the context of the Web server and Notes client, the compute engine is
now more than four times faster. In the context of rebuilding views, it is two to
three times as fast. However, keep in mind that this does not mean that your
views will refresh two to three times faster. Because disk I/O (reading notes
from disk and writing results to the index) makes up a greater percentage of
the time it takes to rebuild a view (maybe 80 percent depending on the size of
the notes and the size of the results), the improvement to the formula
computation portion has the effect of visibly improving the rebuild time by 10
to 15 percent. Also, the more formula intensive a form is, the bigger the
performance gains. For example, a huge form with lots of hide-when formulas
that might have taken a couple of seconds to refresh and been very sluggish,
will now refresh almost instantaneously. This is assuming, of course, that the
formulas don't do lots of expensive things like @DbLookups and
@GetDocField.

Which of the features that you've added is your favorite?

The array subscript operator, which allows the formula developer to get away
from the dreaded @Subset. Consider what the developer used to have to do
to get the fifth element out of a text list:

X := @Subset(@Subset(list; 5); -1);

© Copyright 2001 Iris Associates, Inc. 2

Notes.net: Meet the developer: Damien Katz on the Rnext formula language "Iris Today" webzine at http://www.notes.net

© Copyright 2001 Iris Associates, Inc.

Now it's this simple:
x := list[5];
Plus it can be used after any expression, examples:

x := (list + 5)[x];
X := @DbName[2];

I think this will help a lot of developers be more productive, plus it might
prevent a few cases of carpal tunnel syndrome.

About Damien Katz

Damien joined Iris in 1997. Before switching his focus to the formula language a year
and half ago, he worked on developing several of the R5 templates, including the R5
Welcome Page (see his Iris Today article Customizing the Welcome page) and the
Statistics & Events database template. Prior to joining Iris, Damien did Notes and
Domino consulting in the Charlotte, NC area. When not working, he spends time with
his wife Laura, plays basketball, lifts weights and runs his off-color humor Web site.

About Michelle Mahoney

Michelle Mahoney is a writer in the Notes/Domino User Assistance group and is
currently working on updating and improving the formula language documentation for
Rnext.

