
© Copyright IBM 1

by Keri Tuttle
and Seol Young Park

Level: Intermediate
Works with: Lotus Workflow
Updated: 01-Jul-2003

An important and useful feature of Lotus Workflow is the Web Viewer. The Web Viewer lets you view a job or
process diagram and examine its status, properties, and activities. You can also print a job or process diagram
from the Web Viewer.

In this article, we describe how to enable and use the Web Viewer included in our Lotus Workflow Java API
demo. This custom Web Viewer can be accessed by Web clients running on WebSphere Application Server. We
begin by installing the Web Viewer and configuring it for our demo. We then describe Web Viewer customization
features that allow you to make it accessible from a client's Web page. (You can download the demo, complete
with all sample code shown in this article, from the Sandbox.)

This article assumes that you're an experienced Java/JSP/JavaScript programmer and that you are familiar with
Lotus Workflow features and terminology. We also assume that you're experienced with the Domino and
WebSphere environments, especially WebSphere Application Server and WebSphere Studio Application
Developer. In addition, you should read the earlier LDD Today article Using the Lotus Workflow Java API in
Domino and WebSphere, which covered how to use the Lotus Workflow Java API in Domino and WebSphere.

Installing and configuring the Web Viewer
The first thing we need to do is install and configure Lotus Workflow.

Installation
There are two parts to the Lotus Workflow install: the main install for the Workflow Engine and Architect and the
Web Viewer install. This section describes only the Web Viewer portion of the installation. For a full description
of the Lotus Workflow installation procedure, see the Lotus Workflow Installation and Administration Guide.

Run the setup for Lotus Workflow. When you see the following screen, deselect the Select/Deselect all 1.
Program files checkbox, and select the Web Viewer Servlet (Server only) checkbox:

Lotus Developer Domain: Customizing Lotus Workflow Web Viewer and enabling it in Java
www.lotus.com/ldd/today.nsf

© Copyright IBM 2

A prompt asks if you want setup to detect the Domino server. Click Yes. The program then enters the proper 2.
paths for the Web Viewer.
Click Next to start the install.3.
If you do not have a servlets.properties file on your system, the install program asks if you want one created. 4.
Click Yes. If you do have a servlets.properties file in your system, you see the following screen. Choose the
appropriate option and click Next.

Lotus Developer Domain: Customizing Lotus Workflow Web Viewer and enabling it in Java
www.lotus.com/ldd/today.nsf

© Copyright IBM 3

The Web Viewer files are now copied to your hard drive. Accept the defaults to finish the rest of the installation.

Configuration
There are a few settings in Domino that need to be set for the Web Viewer to work. The Domino servlet engine is
very important for the functioning of the Web Viewer. If it is not enabled, the Web Viewer cannot run. The Domino
server also needs access to run Java. Below are the steps to enable Java support and to grant the required
access rights. For more information on Domino Java support, see the Domino Administrator Help.

Enabling servlet support
Follow these steps to enable Domino servlet support.

In the Domino Directory, open the Server document for your server.1.
Open the Internet protocols - Domino Web Engine tab.2.
In the Java servlet support field, select Domino Servlet Engine.3.
In the Servlet URL field, enter /servlet (if it is not there already).4.
In the Class path field, enter domino\servlet (if not there already).5.

Allowing Java to run on the server
Follow these steps to enable Domino to run Java applications.

Open the Server document for your server.1.
Click the Security tab.2.
Enter an asterisk (*) in the two fields labeled Run restricted Java/JavaScript/COM and Run unrestricted 3.
Java/JavaScript/COM.
Save and close the document.4.

The configuration information provided in the preceding steps is for the demo provided with this article. To use
your own databases, you need to add your application database path to the servlet.properties file and enable the
viewer log in the application database setup document. Also, the application database's ACL must give the
server Manager access with the files Process Server and Process Reader. For more information on configuring
your own application database, see the Lotus Workflow documentation.

Customizing the Web Viewer
There are a number of ways you can change the "look and feel" of the Web Viewer so that it blends seamlessly
with a client's Web page. You can select different style sheets or choose to have Sametime awareness enabled
for instant messaging. This section describes some of the modifications you can make. (Note that the
modifications presented here can also be used in a pure Domino environment.)

The following table shows some of the parameters you can add to your servlets.properties file to change the
look and feel of the Web Viewer:

Attribute Values Description

ApplPath <Path to application
database file>

Specifies the path to the application database
file. The default is "" (no path specified).

LogLevel debug, status, error,
none

These are as follows:
debug: all messages loggedl

status: all status and error messages l

logged
error: only error messages loggedl

none: logging is disabledl

If omitted, default is status.

Style standard, glass, sketch,
white

Specifies the style sheet to use when drawing
diagrams. If omitted, default is glass.

DiagramTitle true, false If false, turns off diagram page titles. If omitted,
default is true.

PropertyTitle true, false If false, turns off property page titles. If omitted,

Lotus Developer Domain: Customizing Lotus Workflow Web Viewer and enabling it in Java
www.lotus.com/ldd/today.nsf

© Copyright IBM 4

default is true.

CloseButton true, false If false, turns off the close button on property
pages. If omitted, default is true.

Sametime true, false If false, turns off Sametime on property pages. If
omitted, default is true.

SametimeServer <Server name> Specifies the name of the Sametime server. If
omitted, Sametime is turned off.

NoLogin true, false If true, then no SSO cookie is sought and no
user ID/password pair is requested. Instead, all
access is through the server's Notes ID (usually
permitting universal access to the Lotus
Workflow databases).

LoginPage <Login URL> Specifies the URL used instead of the servlet's
default page, if a user ID/password pair is
requested. Note that this specifies the scheme
(for example, http or https) as well as address.

LogoutPage <Logout page URL> Specifies the page that is returned if a request
type of logout is received. If null, a blank page is
sent. The default value is null.

Here is an example of a servlet.properties file edited to add Sametime support, to remove the diagram title, to
remove the close buttons, and to change the style from glass to sketch. Also note there is no title for your
diagram, and the style sheet has changed. If you click an activity, you also find that the close button is no longer
available:

servlet.WebViewer.initArgs=LogLevel=DEBUG,ServerAlias=WebViewer,ApplPath=
Workflow/Sample_Application_301_en.nsf,Sametime=true,SametimeServer=server.lotus.com,
DiagramTitle=False,CloseButton=False,Style=sketch

The following graphics compare the default settings for the Web Viewer and the settings added in the preceding
example. First let's look at the default:

And here's the same view customized:

Lotus Developer Domain: Customizing Lotus Workflow Web Viewer and enabling it in Java
www.lotus.com/ldd/today.nsf

© Copyright IBM 5

Adding another application database for viewing
A great feature for sites that have more than one application database is the multiple Web Viewer servlet. This
allows the Web Viewer to work with more than one application database at a time. Here is how to add multiple
application support to the Web Viewer:

Open your servlets.properties file.1.
Add these two lines to the file:2.

servlet.WebViewer2.code=com.lotus.wf.WFServlet
servlet.WebViewer2.initArgs=LogLevel=DEBUG,ServerAlias=WebViewer2,
ApplPath=workflow/app2.nsf

replacing app.nsf for your other application database.

Open your application specified in step 2.3.
Choose View - Design.4.
Click Resources, then click Shared Fields.5.
Open SKWebViewerSettingsOS and with Value selected on the Objects tab, enter the following:6.

FIELD WebViewerURLOS:="/servlet/WebViewer2";

Restart the HTTP task on the Domino server.7.

Now you can use the Web Viewer with both our demo application database and your own application database.
You can use this setting for as many application databases as you want.

Sametime settings (optional)
To integrate Sametime functionality into your Web Viewer:

Copy the Sametime folder from the Workflow install CD to the following directory on your Sametime server:1.

<drive>\Lotus\Domino\Data\domino\html\stlinks

In the servlets.properties file, add the following to your Web Viewer line:2.

Sametime=true, SametimeServer=Sametime4.yourcompany.com

The line should now look like this :

servlet.WebViewer.initArgs=ServerAlias=WebViewer,ApplPath=
Workflow/<Application database filename>,Sametime=true,
SametimeServer=Sametime4.yourcompany.com

Open the Domino Notes.ini file and add the following to the JavaUsersClasses line:3.

<jar file path here>\STComm20.jar

Lotus Developer Domain: Customizing Lotus Workflow Web Viewer and enabling it in Java
www.lotus.com/ldd/today.nsf

© Copyright IBM 6

Customizing the style sheet WebViewer.css and JavaScript files
There are two additional areas where customization can be done on the Web Viewer. These are the style sheet
WebViewer.css file and the JavaScript file.

WebViewer.css
Style settings are not embedded directly in the HTML but are controlled through a separate Cascading Style
Sheet file called WebViewer.css. By modifying this file, you can control the appearance of the page by adjusting
title fonts, font colors, font sizes, and the background color.

JavaScript
Servlet requests are usually routed through JavaScript functions in the Web Viewer so that you can easily use
them for customization. For example, when a user clicks on an activity in a View Diagram, the Property Page is
not loaded immediately. Instead, the JavaScript function onObjectClick is called to bring up the correct Property
Page. By using JavaScript as an intermediary between pages, you have a layer of functionality that can be
modified.

Currently only three JavaScript functions are available for the Web Viewer:
displayDiagram makes a request to the WebViewer Servlet to display a Process or Process Instance l

Diagram.
displayProperties makes a request to the WebViewer Servlet to display a Property Page that corresponds to l

the object selected.
onObjectClick is called when an object has been clicked in the View Diagram. For most objects, l

onObjectClick calls displayProperties to display a Property Page that corresponds to the object selected.
However, for clusters or process links, it calls displayDiagram to expand the cluster or sub-process.

Enabling the Web Viewer
In this section, we enhance our Java API demo to show all the available process names for the user to start a
workflow with. We also show the current design of the selected process or the current status of a selected job
from the worklist view in various customized ways . For example, the following screen shows the status of the
selected job in a workflow process:

We display detailed information on the left bottom when the user clicks the controlling activity. You also can open
diagrams and property pages in new windows based on your design.

We need to customize code in both your WebSphere and Domino environments to accomplish this. We discuss
the changes in Domino first and then move to the Java API changes in WebSphere. (Our demo provides all the
customized files for both Domino and WebSphere. You can download our demo from the Sandbox.)

Customizing Domino

Lotus Developer Domain: Customizing Lotus Workflow Web Viewer and enabling it in Java
www.lotus.com/ldd/today.nsf

© Copyright IBM 7

We need to modify the servlet initialization arguments, StyleSheet file, and JavaScript file. Before you begin, we
suggest you back up your files.

Step 1: Modify servlet.properties on your Domino server
Edit the servlet.properties in your Domino server as indicated by the bold text. You can find this file in your
Domino data directory. We've added two servlets initialization arguments to turn off diagram title and close
button by default:

servlet.WebViewer.initArgs=LogLevel=DEBUG,ServerAlias=WebViewer,ApplPath=
Workflow/Sample_Application_301_en.nsf, DiagramTitle=false,CloseButton=false

Step 2: Modify the WebViewer.css file in your Domino data\domino\html\WfRoot\StyleSheets directory
The following lines add the border line effect to the property page style so that it shows with the border line in a
frame or a new window:

body.propbody
{
border : 2px inset solid #517999;
............
}

Step 3: Modify the WebViewer.js file under Domino data\domino\html\WfRoot\Scripts
If you customize only the process/job diagram, you can use a separate file to store your custom codes. However,
the custom file is not accessible in the diagram pages submitted by Web Viewer, and therefore may not work as
expected. To avoid this, we've added custom JavaScript code inside the original file with separate code using a
new function object called CustomViewer.

The JavaScript object CustomViewer is created when the page is loaded by the line at the end in WebViewer.js
file:

var myViewer = new CustomViewer();

You can reference CustomViewer properties and methods by calling it as myViewer, for instance,
myViewer.windowFeature. CustomViewer has several properties such as target frame name, window features
(when opening as a new window), Web Viewer constants such as diagram styles, and diagram types as
follows:

function CustomViewer() {
this.isOpenNewWindow = true;
this.diagramTargetFrame = "";
this.propertyTargetFrame = "leftBottomF";
this.windowFeature =
"width=600,height=400,menubar=no,toolbar=no,location=no,status=yes,resizable=yes,
scrollbars=yes";

};

// properties for WebViewer constants
CustomViewer.prototype.styles = ['glass','sketch','standard','white']; // We will pass 0 ~ 3 to
set the diagram style with the corresponding name
CustomViewer.prototype.processDiagram = 'Process';
CustomViewer.prototype.jobDiagram = 'Job';

The custom object also has a utility method to get the current selected process name from the available
process list and two wrap-up methods to call Web Viewer functions to display diagrams:

showProcess displays the process diagraml

showJob displays the selected job's diagraml

Lotus Developer Domain: Customizing Lotus Workflow Web Viewer and enabling it in Java
www.lotus.com/ldd/today.nsf

© Copyright IBM 8

// A method to pass necessary parameters to display a process diagram.
CustomViewer.prototype.showProcess = function (fieldName, styleId, isNewWindow)
{

var obj = eval('document.forms[0].'+fieldName);
// Note that there is a known issue in the current API to return a proper process ID, so we are manipulating
the process ID here to work around it.
processID = this.getSelectedProcess(obj)+"A0";
// If we open the diagram in the existing window, we pass a target frame name.
if (! isNewWindow) {
this.isOpenNewWindow = false;
this.diagramTargetFrame = "contentF"; // target frame name that you'd like to open your page.

}
// It calls the function provided by Lotus Workflow Web Viewer
displayDiagram(WEB_VIEWER_URL,'',myViewer.processDiagram, processID,'',this.styles[styleId],'');

}

// A method to pass necessary parameters to display a process diagram.
// It works almost the same as showProcess shown above except for the parameter list that we pass.
CustomViewer.prototype.showJob = function (styleId, instanceID, isNewWindow) {
.........
displayDiagram(WEB_VIEWER_URL,'',myViewer.jobDiagram, instanceID,'',this.styles[styleId],'');

}

For the showJob method, you can use the custom parameter (the last parameter in the list) to enable
Sametime. Here is an example:

displayDiagram(WEB_VIEWER_URL, '' ,myViewer.jobDiagram, InstanceID, '' , this.styles[styleId] ,
'&Sametime=true&SametimeServer=yourSametimeServer.com');

So far, we've explained the new code we added. Now, we slightly modify the two default functions provided by the
Lotus Workflow Web Viewer as follows. The rest of the default functionality stays the same:

function displayDiagram(servlet, format, diagtyp, diagid, clusid, style, custom)
{

...
// If we set it to open in a new window, it will open the diagram to a new window using the
window features we set.
// Otherwise, it will open to a frame in the existing window passed in myViewer.diagramTargetFrame.
if(myViewer.isOpenNewWindow)
{

var window = top.window.open(page, "", myViewer.windowFeature);
} else {

eval("parent." + myViewer.diagramTargetFrame + ".location = page;");
}

}

function displayProperties(servlet, format, diagtyp, diagid, objtyp, objid, custom)
{

..

if(myViewer.propertyTargetFrame=="") {
propWin = window.open(page, "propertyWindow", myViewer.windowFeature);

} else {
//After Web Viewer submits a diagram, our custom object myViewer will not be available in the
diagram page.
//To share the code for both cases opening to new or old window, we have tried to put a trick here.
//If there is no target frame object, we will open to a new window.

Lotus Developer Domain: Customizing Lotus Workflow Web Viewer and enabling it in Java
www.lotus.com/ldd/today.nsf

© Copyright IBM 9

if (typeof(parent.leftBottomF)=="object") {
eval("parent." + myViewer.propertyTargetFrame + ".location = page;");

} else {
propWin = window.open(page, "propertyWindow", myViewer.windowFeature);

}
}
........................

}

This completes our customization in Domino. Now, let's move on to WebSphere.

Customizing WebSphere
Before you begin working with the code, you must import the demo file LWFJavaAPIDemo2.ear into WebSphere
Studio Application Developer:

Open WebSphere Studio Application Developer. 1.
Choose File - Import. 2.
Select the EAR file from the displayed list of file types, then click Next. 3.
Browse to LWFJavaAPIDemo2.ear. 4.
Specify your Enterprise Application project name, and then click Finish.5.

Note that our demo EAR file has been exported from WebSphere Studio Application Developer 5. If you are using
WebSphere Studio Application Developer 4, you need to correct duplicated source directories. Move all the files
under source\source to the source directory and remove the nested source directory.

Modify constants files
In addition to the two existing constants (Domino server name and replica ID of the Lotus Workflow application
database), we have two new constants that you need to modify for your demo environment. One is for the Web
Viewer servlet URL, the other is the location of the Web Viewer JavaScript file:

public final class CustomConstants {
.......
public final static java.lang.String LOTUS_WEBVIEWER_URL = "
http://yourDominoServer.com/servlet/WebViewer";
public final static java.lang.String LOTUS_WEBVIEWER_JSFILE = "
http://yourDominoServer.com/WFRoot/Scripts/WebViewer.js ";

}

We've also moved the link paths and SQL queries used in our pages to the constants class file. You don't need
to modify this unless you want to try different links/queries. We used the SQL QUERY_AVAILABLE_PROCESSES
to get all the available process names for the user:

public final class Constants {
...
// SQL queries used in the API calls
public final static java.lang.String QUERY_AVAILABLE_PROCESSES = "SELECT PROCESSMANAGER,
NAME FROM AVAILABLE";
 ...

}

After modifying these lines, save the file and rebuild the project.

navigator.jsp
Our Java API demo has three frames. One is for navigation on the top left, the second for actual content
displayed on the right, and the third is located in the bottom left for the additional information to be displayed
(such as property page for each activity in process/job diagram). The navigate.jsp page is shown on the top left
to display links to create new jobs, available processes, and the icon to launch process/job diagrams.

Lotus Developer Domain: Customizing Lotus Workflow Web Viewer and enabling it in Java
www.lotus.com/ldd/today.nsf

© Copyright IBM 10

The Lotus Workflow Java API getProcessManagers returns the list of processes that can be initiated by the user.
We parse the string list and get the process name and save them to another Vector, pName:

<%
Vector availableProcesses = new Vector();
Vector pName = new Vector();
try {

..........
availableProcesses =
worklist.getProcessManagers(Constants.QUERY_AVAILABLE_PROCESSES,-1);

%>

We have included the Web Viewer JavaScript file to get the Web Viewer URL from the custom constant that we
set in the class:

<script type="text/javascript" src="<%= CustomConstants.LOTUS_WEBVIEWER_JSFILE %>"></script>
<script type="text/javascript">

var WEB_VIEWER_URL = "<%= CustomConstants.LOTUS_WEBVIEWER_URL %>" ;
</script>

The following code adds a glass icon with the onClick event to display a process diagram with the glass style to
an existing frame specified:

<IMG class="s-cursorhand" src="../images/lwfvwicnviewpro.gif" border="0"
onClick="myViewer.showProcess('ProcessList',0,false);">

<A href="<%= CustomConstants.LOTUS_WEBVIEWER_URL %>" onClick="myViewer.clean();"
target="contentF">View
Processes

<!-- We parse the strings from availableProcesses object and get the process names to generate the list
-->
<SELECT NAME="ProcessList" width="100px">
<%

for (int i=0; i < availableProcesses.size() ; i ++) {
String token = availableProcesses.elementAt(i).toString();
pName.add(token.substring(token.lastIndexOf("|")+1,token.length()));

%>
<OPTION><%= pName.get(i)%>
</SELECT>

When you click the View Processes text, it opens the Web Viewer servlet information page. You can use this link
to test whether or not your Web Viewer is configured and working:

Lotus Developer Domain: Customizing Lotus Workflow Web Viewer and enabling it in Java
www.lotus.com/ldd/today.nsf

© Copyright IBM 11

ActivityList.jsp
When you click Worklist, notice that we have added an icon in front of each activity. The icon launches the Web
Viewer to display each activity status. To demonstrate various ways to display the Web Viewer, we open the Web
Viewer in a new window for the activities which have been claimed. The job diagram for new activities is
displayed in the existing window:

We have added lines to get the instance ID from the key to pass to the Web Viewer when we generate tokens.
Tokens[0] has the key returned by the API, and the key string format is:

<KeyType>"#"<Server>"#"<ReplicaID>"#"<PhysicalID>"#"<InstanceID>"#"<ActivityDefinitionID>"#"<LoopID>

We need the fifth token from the key string:

<%
......

String key = java.net.URLDecoder.decode(Tokens[0]);
for (int idx = 0; idx <4 ; idx++) {

key =key.substring(key.indexOf("#")+1 , key.length());
}
key = key.substring(0, key.indexOf("#"));

%>

After we get the key, it's simple to call myViewer.showJob with the glass style diagram to obtain the key and the
last parameter to open in a new window or in an existing window:

Lotus Developer Domain: Customizing Lotus Workflow Web Viewer and enabling it in Java
www.lotus.com/ldd/today.nsf

© Copyright IBM 12

<IMG class="s-cursorhand" src="<%= request.getContextPath() + "/images/lwfvwicnviewpro.gif"
%>"onClick="myViewer.showJob(0,'<%= key %>',true);">

Customizing the Web Viewer in your applications
We've shown how you can add Lotus Workflow Web Viewer to our Lotus Workflow Java API demo UI and to the
Java API in WebSphere and Domino. Try it out, but don't forget to get authenticated with your Domino server
before you run your application in WebSphere Studio Application Developer to obtain an SSO token. We hope
you find this useful as a way to customize your own applications.

ABOUT THE AUTHORS
Keri Tuttle joined Lotus/IBM in 2000, originally as a member of the Lotus Workflow quality assurance team. She is now a
member of the Lotus Workplace quality assurance team.

Seol Young Park joined Lotus/IBM in 1994, working on multiple projects for the International Product Development team. Seol
Young joined the Lotus Workflow team in 1999, serving as a developer for the Lotus Workflow Engine. She is now a member
of the Lotus Workplace Messaging Client development team.

