

by
Russ
Lipton

Level: Intermediate
Works with: Domino 5.0
Updated: 10/01/2001

XML (eXtended Markup Language) has become an industry-standard
meta-language for data modeling and presentation. DXL (Domino XML
Language) is Domino data expressed as XML. With it, you can conveniently
import, export, work with, and transform the data in your Notes databases.
Today’s Lotus XML Toolkit Release 1.0 and tomorrow’s Domino Rnext
capabilities solidify Domino’s role as a strategic data integration point within
your organization.

This article offers an overview of XML and DXL in the context of R5, the
Lotus XML Toolkit, and Domino Rnext. While XML and DXL will be moving
targets for the next few years, both are stable enough to support a wide
range of prototyping as well as production application development.

This article assumes you are an experienced Lotus Notes/Domino developer
with a basic working knowledge of XML. Proficiency in Java and C++ will be
a definite help. Also, a several online resources are provided at the end of
the article to help you ramp up your XML skills so that you can take
advantage of DXL.

Why XML and DXL?
The Web—and especially HTML—has illustrated the amazing benefits of
using a consistent data model. Do you want to jump from Notes.net to
Google.com, to Lotus.com, or to another site to solve a problem? Click.
Click. Click. Click.

Consider what it would have taken to exchange and display the same data
with older protocols in those far-off days of, say, 1991. It might not have
been possible at all. Convenient collection and efficient distribution of data
to a billion users around the globe in near real-time would definitely have
been impossible.

The Web has demonstrated that an always-almost-broken network
dependent on a limited, semi-standard presentation language is just the
ticket for reasonably static documents. However, this won't cut it for
mission-critical applications. While Java, Javascript, and a host of
proprietary sub-languages fill vital niches, they don't address the Internet's
two most critical requirements:

A simple, readable language to define and validate well-structured data l
through universally accessible data exchange protocols
An equally consistent mechanism to transform and present that datal

XML and its sibling protocols promise to meet these requirements for the
industry as a whole. DXL, XML for Domino, fulfills these requirements for
Notes users. Because DXL is XML, it exposes the Domino architecture and
data stores for data import, export, and transformation to anyone or any tool
that can process XML.

Domino is already a superb environment for data integration. Using DXL,
you can rely on Domino to manage data that has been too difficult or costly
to integrate programmatically in the past. You can also move your Domino
data outside Notes if you prefer to use tools other than Designer for crafting
your applications. So, most likely you'll use DXL in four ways:

© Copyright 2001 Iris Associates, Inc. 1

Notes.net: DXL roadmap: Understanding Domino's XML language "Iris Today" webzine at http://www.notes.net

To import XML data from external databases or applications into l
Domino databases.
To export XML data from Domino databases into other applications or l
databases.
To modify data in a Domino database by exporting DXL, making l
changes, and then reimporting the data back to Domino.
To use Domino data for processing in an external XML tool, either as an l
end-point or as an intermediate stage before reimporting the data back
into Domino. Or, you can create DXL data directly in a third-party tool
and import it into Domino.

Simply stated, any data in any environment anywhere in your corporation is
now a candidate for management within Domino and Notes.

DXL is not stored in an NSF (using the on-disk storage format) nor can it be
displayed directly in a browser—that is, retaining presentation semantics.
(Limited display of raw XML data is feasible with some browsers.)

That said, beyond the uses described above, Domino is ideal for storing
XML texts, including DTDs, DXL data, and XSL stylesheets. By storing these
texts within a Domino database, you gain Domino's security, replication, and
view capabilities for organizing your XML. You must weigh these benefits
against a small performance penalty compared to retrieving XML directly
from the file system.

The foundation: XML
SGML (Structured Generalized Markup Language) is a robust, mature, and
nearly impenetrable standard for defining document structure in a
presentation-independent form. While the government has often mandated
its use, private industry has found the costs of widespread adoption
prohibitive.

HTML is an example of a sub-language defined with a SGML-compliant DTD
(data type definition). HTML's direct costs are minimal and its adoption has
been universal. HTML was designed originally to support simple
presentation of documents over the Internet. It has become overloaded with
features that undermine its chief virtue (simplicity) while failing to provide
enough power and flexibility for serious data manipulation.

XML has emerged as a reasonable compromise between the complexity of
SGML and the ad hoc nature of HTML. By design, XML defines a
surprisingly spare set of tags and rules. XML serves as the base for defining
other meta-languages that adhere to its rules.

The classic examples are still relevant. Where you use <P> and only <P> to
specify a paragraph break in HTML, you may now also define <PRODUCT>
or <SOFTWARE> or <RNEXT> to structure your XML data so that it can be
processed or transformed at a higher semantic level. XML separates data
from presentation more rigorously than HTML does—and in a way that is
consistent with the Notes architecture, which applies forms to display
underlying data.

Here is a simple XML file:

<?xml version=”1.0”?>
<DOMINO_PRODUCTS>

<OS type=”NT”>
<VERSION>Server</VERSION>
<RELEASE>5.0</RELEASE>

</OS>
<OS type=”NT”>

<VERSION>Client</VERSION>
<RELEASE>5.0</RELEASE>

© Copyright 2001 Iris Associates, Inc. 2

Notes.net: DXL roadmap: Understanding Domino's XML language "Iris Today" webzine at http://www.notes.net

</OS>
<OS type=”Linux”>

<VERSION>Server</VERSION>
<RELEASE>5.0</RELEASE>

</OS>
</DOMINO_PRODUCTS>

This code defines two different types of operating system products, for NT
and Linux, respectively. Each product type is assigned a version (for
instance, server or client) and a release number.

The key point here is that while HTML tags have been defined by a handful
of parties, XML tags can be defined by anyone. That is, while Microsoft's
Internet Explorer browser only reads HTML tags conformant to its model,
any standard XML processor should be able to read any XML standard
tags—whether they were defined by Microsoft, Lotus, or you. And that
means you have a great deal of flexibility. For example, you might choose
this alternative approach to defining products:

<PRODUCT type = "Server">
<OS>NT</OS>
<RELEASE>5.0</RELEASE>
<MEDIA>CD</MEDIA>
<PRICE>995.00</PRICE>

</PRODUCT>

XML is verbose by design (although you may be as cryptic with your tags as
you'd like). Because XML is text, it can be written or read in any text editor
and is easily modifiable.

As XML matures, editing, validation, and schema design tools are making it
more convenient to ensure that XML texts are well-formed (with matching
tags) and valid (they meet their data type or schema definition, if one is
provided). See the last section of this article, Internet resources to support
you DXL work, for a list of XML resources and links.

The Domino DTD and DXL
XML documents can be created with or without document type definitions
(DTD). Without a DTD, XML processors can still determine whether a
document is well-formed syntactically. However, a DTD makes it possible to
decide whether a document is also valid—that is, whether the tags in a
document conform to a specification.

In fact, DTDs are not standard XML, a key reason why XML schemas are
now vying for their role. However, DTDs are relatively straightforward.
Basically, you specify the elements within your XML documents in a
hierarchical structure that resolves at its root to parsed (PCDATA) or
unparsed (CDATA) data.

The following simple example shows what a DTD might look like for the
sample XML file in the previous section. (Note that it is purely coincidental
that DOMINO_PRODUCTS is both the document type and an element within
the document.)

<?xml version =”1.0” standalone=”yes”?>
<!DOCTYPE DOMINO_PRODUCTS [
<!ELEMENT DOMINO_PRODUCTS (OS)*>
<!ELEMENT OS (VERSION, RELEASE)>
<!ELEMENT VERSION (#PCDATA) >
<!ELEMENT RELEASE (#PCDATA) >
<!ATTLIST OS type (Linux | NT | Macintosh)>
]>

© Copyright 2001 Iris Associates, Inc. 3

Notes.net: DXL roadmap: Understanding Domino's XML language "Iris Today" webzine at http://www.notes.net

What is crucial is that elements contain other elements in hierarchical
relationship; in this example, a Domino product is defined by its operating
system. which in turn, contains a version and release. Notice also that the
OS element is associated with a list of attributes. This is why the actual
document could specify OS type = "Linux".

You can add tags to a DTD at any time. Tags that are not used or
recognized within your XML document are ignored. If you fail to describe
tags properly within the DTD, most XML processors will complain
appropriately.

The Domino DTD, which is supplied with the Lotus XML Toolkit, describes
the rules for creating valid XML files for Notes database elements. You will
need to understand the DXL tags within the Domino DTD well enough so
that you can choose them for your own documents.

Ultimately, DXL will represent every meaningful data element managed by
Notes databases in XML—from rich text documents through forms and
views to fields and design elements. Most elements are already
represented. More are being added every month. Internal work has focused
first on Notes data representation. It is moving outward by stages (and in
parallel with data representation) to provide increasingly sophisticated
support for parsing and transforming that data.

You will also be able to choose between using either the Domino DTD or a
Domino XML Schema for your DXL work. You can download a
Lotus-developed schema for evaluation.

If you already understand Notes databases and classes, you will find the
DTD reasonably self-documenting. Copious comments within the DTD
further explain the relationship of elements to one another for use as DXL.

The Domino DTD is understandably extensive. The documentation chunks it
into usable pieces, complete with examples. This screen from the Lotus
XML Toolkit Guide shows the body element help topic:

In the DTD documentation, you can follow links to drill for more detail. Not
only will a knowledge of Notes databases make it easy to read the DTD, but
the DTD is itself a tremendous training tool for understanding the structure
of Notes databases.

© Copyright 2001 Iris Associates, Inc. 4

Notes.net: DXL roadmap: Understanding Domino's XML language "Iris Today" webzine at http://www.notes.net

Here is a fragment that partially demonstrates how rich text described in the
Domino DTD can be specified in an actual DXL text:

<document form='Memo'> <noteinfo
unid='9C93469B4BFC2081852567AE00559882'>

<created>

<datetime>19991205T091500,00-04</datetime>
</created>

</noteinfo>
<item name='Subject'>

<text>DXL Article</text>
</item>
<item name='Sent'>

<datetime>19991205T091500,00-04</datetime>
</item>
<item name='From'>

<text>Russ Lipton</text>
</item>
<item name='Body'>

<richtext>
<par>

<run>
Please

</run>
 use Domino DXL!

</par>
</richtext>

</item>
</document>

As you can see, this is "just" standard XML using the specially defined
Domino tags. Note these points:

The document is represented as a tree composed of nodes and l
subnodes. I have added white space and indentation here to bring this
point out. You may or may not want to do this yourself.

Most (though not all) XML processors will ignore the white space within l
an XML text. They will retain the white space that is created within tags
themselves (for instance, <text>Russ Lipton</text>). (White space is a
specialized subject all to itself).

"Item" is the primary element of this XML text. l

Attributes specialize the meaning of defined database components (in l
this case, the document's form attribute is "Memo"). Like all XML, each
tag is enclosed (that is, <item>some text goes here</item>). The
"name" attribute of the Item element includes the following possible
values: "subject," "sent," "from," and "body".

The "richtext" tag enables us to decompose a note into most of its l
detailed components. A strong goal for Rnext is complete
representation of all rich text components.

This next fragment shows another key Domino data type (forms), illustrating
that you can make use of design elements, formulas, buttons, and scripts
within DXL just as you can with other database components:

<form name='Mini Doc' default='true' mailable='true'>
<noteinfo>...
</noteinfo>
<code event='windowtitle'>

<formula>@If(@IsNewDoc; "New Memo"; Subject)
</formula>

</code>

© Copyright 2001 Iris Associates, Inc. 5

Notes.net: DXL roadmap: Understanding Domino's XML language "Iris Today" webzine at http://www.notes.net

rest of XML text follows
</form>

Since new releases introduce new components, the Domino DTD will
change periodically. However, nearly everything you work with in Domino is
now (or will soon be) at your disposal within DXL. You will probably find that
the supplied DXL tags best meet your needs, but you may certainly create
your own DXL tags if you require a custom mapping of Domino data.

The Lotus XML Toolkit and Rnext
The Lotus XML Toolkit, originally released in the summer of 2000, for
preview, works with Domino 5.0 and later releases and is readily available
as a free download.

The Lotus XML Toolkit Release 1.0 offers a set of Java and C++ classes for
DXL programming written over the Notes C API for all Win32 platforms.
(New DXL features, including support for other platforms, will appear in
Rnext.)

You can also make considerable use of the Lotus XML Toolkit at the
command line. Here are two typical command lines for exporting and
importing DXL (don't worry about the flags for now; this is just for
illustration):

dxlexport db.nsf -o db.xml -a

dxlimport -i db.xml -d newdb.nsf -co

The toolkit offers a series of examples that you can use as a tutorial to
learning DXL programming.

The Importer and Exporter classes in the Toolkit give you the core
functionality you need to work with data. The DXLImporter class inputs DXL
data into a Notes database. Import option properties are set before calling
the methods. They include:

DXLIMPORTOPTION_CREATE (always create new data)
DXLIMPORTOPTION_IGNORE (ignore the DXL data)
DXLIMPORTOPTION_REPLACE (replace existing data with DXL data)
DXLIMPORTOPTION_UPDATE (update existing data with DXL data)

The DXLExporter class generates DXL data from a Domino database.

At the other end of the spectrum, with the new NotesNoteCollection class in
Rnext, you can create a NotesNoteCollection object to specify a subset of
notes for export. Based on the NSF search service in the C API, you can
specify type, formula, and/or a "since" time to select the notes of interest.

So, for instance, you can select Notes documents, design elements, admin
notes, or anything that has been represented in the Domino DXL DTD. To
select all design elements:

Dim nc as NotesNoteCollection
Set nc = db.CreateNoteCollection(false)
Call nc.SelectAllDesignElements(true)

That is, you either retrieve the entire database
(db.CreateNoteCollection(true)) or pick out the specific notes that you want
to use.

And don't worry: all standard Notes/Domino security is available to ensure
that only authorized persons are permitted to export or import XML data.

© Copyright 2001 Iris Associates, Inc. 6

Notes.net: DXL roadmap: Understanding Domino's XML language "Iris Today" webzine at http://www.notes.net

While I have emphasized data exchange in this article, the Toolkit samples
also include retrieval of Domino design elements, creation of a Domino
application without the use of Designer, and the use of DXL to summarize
design synopsis information. You can even use DXL to build tools to
complement Designer itself.

The Rnext roadmap
The Notes/Domino Rnext beta version is available for testing now on
Notes.net.

Plans call for Rnext to maintain compatibility with the Lotus XML Toolkit. The
two projects share much of the underlying code. Rnext will also extend
Domino XML support in several important respects.

First, the Rnext development team has factored in important XML classes
from the initial DXL implementation. The original R5 implementation coupled
methods to existing Domino classes. As XML support increases, this would
proliferate methods across all classes. The XML class design delivers an
elegant simplification of the architecture that will decrease code
maintenance and enhance performance.

Second, LotusScript support will be available.

Third, NotesStream and NotesNoteCollection classes will be added.These
can pipe XML import and export or select granular elements of Notes
databases for data exchange.

Piping means you can save data for interim transformation before further
import-export or, for instance, specify that data should be streamed directly
through a transformation to an export, discarding the interim results.

Rnext class support can be divided into three types:
Standard XML Processors (XMLTransformer, DOMParser, SAXParser)l
DXL Specific Processors (DXLExporter, DXLImporter)l
Helper Classes (NotesStream, NotesNoteCollection)l

Support is planned for both LotusScript as well as Java implementations.

XML processing relies on parsers that traverse the ordered nodes of XML
texts and transform XML data for further use by the receiver of the data.
Richtext items as well as objects created through NotesStream or
NotesNoteCollection classes are all available to the XML processors.

XML processors rely on a Document Object Model (DOM) tree
representation or an event-based model (SAX). The former is more
memory-intensive since the entire document must be loaded; the latter
requires more up-front programming but can query selected nodes more
efficiently. Each is useful in different situations. A third model (XSLT) is
gaining major traction (more on XSLT later in this article).

Rnext's implementation of the DOMParser will enable you to create a tree of
node objects (elements, attributes, entities, and so on), query those nodes
for the value of their properties (for instance, is the queried node null?), and
specify methods against the nodes.

The process method parses the incoming data into a DOM tree, while the
postParse event handler contains the processing logic you want to apply
against the tree.

The SAXParser follows the event-driven model of the standard XML model.
You can process the input XML as a series of events (StartDocument,
StartElement, EndElement, and so on) and use the Output method to write
strings to the Output object.

© Copyright 2001 Iris Associates, Inc. 7

Notes.net: DXL roadmap: Understanding Domino's XML language "Iris Today" webzine at http://www.notes.net

The XSLTransformer class applies an XSL stylesheet against the input to
generate the desired output. This may become the preferred model for most
XML processing as XSLT matures.

XML processors can get their input from, or direct their output to, a
NotesStream or Richtext item, so you can retain intermediate results for use
elsewhere. Alternatively, the output from one processor can be piped
automatically as the input to another processor.

While the NotesStream class has been designed to support Notes XML
applications, it is a general-purpose class suitable for use across Notes.
Basically a FIFO (First In First Out) bucket, a NotesStream object can be
"filled" with data from a back-end class (or several classes) and "emptied" of
that same data for use by other classes.

NotesStream might, for instance, be filled with data exported from a Notes
database using the DXLExporter class and then be emptied into an XSL
Transformer class. Data can be streamed either to a memory buffer or a file.

Introducing XSLT
If you are already competent with DOM or SAX parsers, you will continue to
use them to parse and transform DXL data. If, on the other hand, you are
just now diving into XML, we recommend that you climb the steep but short
XSL/XSLT learning curve. XSL stands for Extensible Stylesheet Language,
and XSLT is the part of the XSL language for transforming documents.
XSLT combines many of the functional characteristics of earlier parsers and
has a longer life cycle ahead.

Ideally, we would like Web browsers to display XML directly. Internet
Explorer 5.0 and higher provides limited support for this. However, direct
browser support for XML lags.

XSL has been evolving for some time as a stylesheet language for
transforming XML to HTML, since all browsers display HTML. Because XSL
is "just" XML, it benefits from its own DTD, ensuring consistency. Individual
stylesheets can be processed by all industry-standard XML tools.

The XSLT stylesheet shown below matches the entire document submitted
to it as XML and counts the number of fields retrieved:

<xsl:stylesheet>
xmlns:xsl='http://www.w3.org/1999/XSL/Transform'
version='1.0'
xmlns:dxl='http://www.lotus.com/dxl'
exclude-result-prefixes='dxl' >
<xsl:output method='html'/>
<xsl:template match='/'>
<H2>Field count</H2>
<xsl:for-each select='//dxl:form'>
<xsl:sort select='@name'/>

<xsl:value-of select='@name'/>:
<xsl:value-of select='count(dxl:body//dxl:field)'/> fields
</xsl:for-each>
</xsl:template>
</xsl:stylesheet>

Notice that the XSLT stylesheet not only describes what it is we want to
match within an XML text but also how we want to present it—the embedded
HTML tags are processed normally.

The partial output document will generate this HTML code. It can, of course,
be displayed in a browser:

© Copyright 2001 Iris Associates, Inc. 8

Notes.net: DXL roadmap: Understanding Domino's XML language "Iris Today" webzine at http://www.notes.net

<H2>Field count</H2>

_Calendar Entry:
38 fields

_Document Memo:
49 fields

_Special\Link Message:
23 fields

_Special\Phone Message:
22 fields

_Special\Send Memo To Database Manager:
39 fields

XSLT relies on template-specification, pattern-matching, and associated
rules for manipulating data based on the results of matches.

Why might you choose XSLT over DOM or SAX even if you are proficient in
all three? With DOM and SAX, you must code a custom program to traverse
the nodes or query the events within XML documents. Each new type of
XML document requires a new program. By contrast, XSLT lets you
describe the transformation you are seeking against the data and lets the
XSL processor determine the best way to go about it. You don't mess with
specifying tedious node manipulation logic.

XSLT's rule-based model may seem confusing at first for those of us
comfortable with procedural languages. It is not really that different from a
database query language like SQL. (XSLT isn't the same as SQL but the
underlying declarative model is somewhat similar). This also reminds us that
many programmers are already writing rule-like queries.

Strategies for real-world use
As we have described, beta versions of Domino Rnext features will be
available over the coming months, providing an opportunity for hands-on
exploration. However, your best bet for XML work right now is the Lotus XML
Toolkit.

We also recommend that you climb the XSLT learning curve. This is well
within the reach of any moderately competent Notes programmer. Don’t let
the need to master XSLT become the barrier that delays real-world usage of
XML and DXL.

Certainly, emerging industry tools for processing DXL, XML, and XSLT will
hide implementation details from view that make current XML applications
awkward at times. Still, remember that once the XML application is
generated by Domino, any XML tools available in the industry can be
applied against the data—like all XML data, it is "just" text.

These things said, how useful is DXL today? Any application that uses data
can benefit from DXL. This covers every application in your organization.

It pertains especially to applications whose enhancement has been stalled
by costly or time-consuming data exchange requirements. It also touches
applications that have been too complex for integration within Notes. Thanks
to DXL, Domino now becomes a data integration environment for vast data
stores across your entire organization.

Internet resources to support your DXL work

© Copyright 2001 Iris Associates, Inc. 9

Notes.net: DXL roadmap: Understanding Domino's XML language "Iris Today" webzine at http://www.notes.net

General XML
W3C Extensible Markup Language (XML) page
XML specifications, guidelines, software, and tools from the World Wide
Web Consortium (W3C).

A Technical Introduction to XML
A short but comprehensive tutorial to XML from XML.Com from 1998 but still
eminently usable.

The XML FAQ
Peter Flynn's definitive FAQ is stable but was updated as recently as June,
2001.

O'Reilly's XML.Com
This online magazine is probably the foremost editorial source for up-to-date
information on XML developments in the industry.

IBM developerWorks XML Zone
A superb collection of articles, tools, and links covering the gamut of XML
and related technologies.

Microsoft's MSDN XML Core
This is a good place from which to explore Microsoft's involvement with this
technology.

The Apache XML Project
A watering hole for open-source development of XML technologies and
tools.

The XML Cover Pages
Robin Cover's near-daily coverage of XML news has long been a favorite of
XML aficionados.

Cafe con Leche XML News and Resources
Another great source for daily XML news coverage plus lots of more
persistent articles.

DevX XML Zone
Yet another comprehensive hub for XML links and resources.

Lotus Software strategy and tools for XML
Lotus XML page
A collection of articles that focus on using XML with current and emerging
Lotus products.

Lotus XML Toolkit page
Download the Toolkit here.

The DXL Resources page on Notes.net
DXL presentations from Lotusphere.

DTDs and Schemas
XML DTD Tutorial
You won't find elaborate explanations, but this will serve as a ready
reference for using DTD syntax correctly.

XML Schemas
The W3C's schema page, with multiple links to ongoing developments
around the Internet.

XML Parsers and Protocols

© Copyright 2001 Iris Associates, Inc. 10

Notes.net: DXL roadmap: Understanding Domino's XML language "Iris Today" webzine at http://www.notes.net

Guide to XML Parsers
This not only explains parsers but offers numerous links around the Web to
parsing tools.

XML-RPC
The spec and needed help for using XML for remote procedure calls over
the Internet based around HTTP.

Java
Java and XML
APIs, downloads, and white papers from Sun.

XSLT
What Kind of Language is XSLT?
An IBM developerWorks article by Michael Kay, who authored the Sax
parser and is widely considered the foremost authority on XSLT.

© Copyright 2001 Iris Associates, Inc. 11

