

Join the search with
John Curtis

by
Laura
Rutherford

Level: All
Works with: All
Updated: 01/02/2002

The modes of searching in Notes and Domino have continued to evolve to
fit the needs of users. John Curtis, senior technical staff member, tells us
what the most significant changes to search have been and what specific
features make Notes and Domino search stand out. He also talks about
some of Lotus’s search products—such as the Lotus Discovery Server and
Domain Search—and what’s new with them and the rest of search for
Rnext and beyond.

Can you summarize the history of Notes and Domino search over the
years? Specifically, tell us how it has evolved and what factors have
driven its evolution.
I wasn’t around then, but I believe that back in R3, Steve Beckhardt did the
project to put the Verity search engine into Notes. Verity was the original
engine we used. What was needed was another way to find documents
besides the traditional view mechanism (the mechanism that sorts a set of
documents in a repository by design). We needed a free-form way of
asking a question, such as “Give me all the documents containing a given
word or words.” Verity had an engine that did that, and a decision had been
made to let its syntax go right through to the user. So all the field-based
searches were all part of the engine. The development of the design of
Notes with the Verity engine was part of that original project.

From V4.1 through 4.6, more and more services inside of Notes started
using full-text search. Because we published the interface through
LotusScript and Java, people could write applications now that used it.
Once programmers starting using search, we had a new phenomenon
showing up, called machine-generated queries. What happens in that type
of query is that certain search boxes are exposed to people, but the query
is decorated with “and this,” “and that,” “or this,” and various other terms
and constructs on top of the query. What the engine sees is a big long
query that filters down to the right set of documents. That happened in
roughly the 4.x timeframe. Also in the same timeframe, there were
independently running agents that were built around full-text search.

Once search services became useful, people started using them a lot—to
route mail, to move things around in their folder, and so on. They used
search mechanisms to find things, move things around, and send
messages. Once you have a set of documents, the sky is the limit. You can
do whatever you want with those documents.

© Copyright 2002 Iris Associates, Inc. 1

Notes.net: Join the search with John Curtis "Iris Today" webzine at http://www.notes.net

There was a facility built in 4.5 called Site Search, which was the first
multi-repository index. You could get multiple databases and create a
single index for them. You could find data across several collections of
documents. In R5, that evolved into something called Domain Search.

Also, in the R5 timeframe there were several mission-critical
applications—including routing mail, which is about as central as it gets in
Notes—that started to use full-text searching. The LDAP lookup looked at
the names and addresses to find the true e-mail addresses of those who
were getting e-mail. If exhaustive search was implemented, the router
waited for the full-text search before mail got routed. Well, that put us right
in the white-hot center of Notes. Many applications started using the search
services. So, the migration with search services has been from an add-on,
nice-to-have, useful feature to something that is central to the way people
do business.

What, in your opinion, have been the most significant changes to
search over the years?
First of all, full-text search is only 15 years old or so, relatively young as
technologies go. But, I have to say the most significant things that have
happened in the last five or ten years are Web search engines. We are at a
point today where, for instance, your grandmother could turn on a computer
and the first application she would use is the search engine. That’s a major
change. The development of the Web as the richest repository of
information in the world and the indexing of that repository are now a critical
way of doing business or a critical way of finding data.

In Domino, likewise, you have had the growth of functionality in
applications. That is, people have embedded search services that have
been evolving over time. Once they find out that they have the capability,
they build the application around it. The machine-generated queries are an
important development in that people don’t see the whole search string
sent to the server, but in fact, that mechanism is used to qualify a search.
You have a context that is invisible to you but on the back-end is very well
controlled.

Google.com raised another bar in search with a novel page ranking
scheme. It eliminates the need to write a complicated query by finding the
best hits the first time. The advance in page ranking is something we are

© Copyright 2002 Iris Associates, Inc. 2

Notes.net: Join the search with John Curtis "Iris Today" webzine at http://www.notes.net

doing—really a Discovery Server specialty. Before Google, the basic notion
had been that the more hits you get for a given term, the higher ranked the
document is—those things are getting much smarter now.

Can you explain what the Lotus Discovery Server is and how it works?
The Lotus Discovery Server is a product and a set of tools that help people
get their arms around the ever-growing body of data that they have every
day in their companies. Also, Discovery Server helps people understand
what other people know. The notion is that people who write stuff know
about that stuff—or the people who get written to about stuff know about
that stuff. You can use the same categories that you use to classify
documents, to classify what people know.

For instance, if I write a lot of e-mail or if I post a lot of entries in databases
on full-text search and those are identified as keywords, then the system
will automatically identify me as someone who knows about full-text search.
Actually, because every enterprise has its own distinctive data, it is not
completely automatic—you do need somebody to camp out and mind the
corporate categories and keep them current. Once you do that, what gets
produced is an index of all documents plus a user experience that lets you
browse the categories that your company has and drill down into different
disciplines to find people and documents about given subjects, performing
searches within those disciplines.

The Lotus Discovery Server contains a pretty powerful interface where you
can go back and forth—you can perform a raw search of the whole body of
information or you can drill down into the different taxonomic nodes within
your tree of categories and search within those. It's the great knowledge
management mantra put to code.

How does the Discovery Server work with Domino and Rnext?
The Discovery Server is sold separately. It takes the name and address
directory information directly into its people repository. It takes directly from
Notes that way. Also it crawls Notes databases, as they are one of the
initial types of repositories it takes information from.

At the same time, it has independence and a mind of its own both from a
product standpoint and from the evolution of where it is going. We run DB2
as well as Notes on the same machine. We have the ability to migrate data
stores and environments to match those our customers are migrating to.

Can you give me an overview of what kinds of search services Notes
and Domino have to offer?
Well, there is the basic free-text search, which is done by typing a few
words into the search bar and clicking the Search button. Today, by default,
we use phrase searching when two or more terms are specified
consecutively; but if the keywords AND, OR or ACCRUE are specified, we
apply the proper Boolean operation. Over time, this will evolve into using
more Web-style semantics.

Even within free-text search with Boolean processing there are things like
stemming (such as farm finds farmer and farming), fuzzy search (for
misspellings), and results sorted by dates or relevance or left in view-sort
order. Through our APIs, we offer "decorated" results, which include URLs,
authors, titles, summaries, and other relevant document data. We also
allow for wildcards—so you could put an asterisk before a set of characters
or after a set of characters and we could find portions of words like that.

Then we start talking about things like fielded search. Fielded search is a
key capability we have offered since we began. This capability allows users
to specify terms or numeric/date-time values to be found within a field in a
document. There are UI assists for these as well. For multi-repository
indexes, we marshal universal field values like creation time, author, and

© Copyright 2002 Iris Associates, Inc. 3

Notes.net: Join the search with John Curtis "Iris Today" webzine at http://www.notes.net

title into fields that span all repositories. The future of this feature is to
eventually allow user-specified fields across multiple repositories.

Finally we have numeric search, which lets you find data based on dates,
times, or other numeric criteria.

If you pull all the search options together you have a very robust syntax
with which you can let people search. There are many ways to get data out
of an index and many flavors of results.

What are some of the search features that make Notes and Domino
stand out?
We have a requirement that we keep things fresh. If you go to the Web,
some of the Web search sites brag about being a week old. That is their
goal. We go for every 15 minutes, if not faster. Our requirement is that we
keep the index as fresh and up-to-date as possible.

Heterogeneity is another thing. We read things from disk. We handle
attachments in Microsoft Office and some of those type forms, and do it
intelligently—as well as files on disk. So we are kind of agnostic as far as
what the data is coming in as.

We also offer global, multi-lingual support. We index documents written in
any language together in the same index and allow users to search that
index in any language. This is unlike many search engines that make
people go to a French-only index, say, for French content.

We also do fielded search across repositories. There are universal fields
like author, title, summary—those kinds of things—which we can marshal
from the incoming data. That’s true across the repositories.

The rich programmability of the interfaces is unique in my experience. We
offer more comprehensive flavors of search and results than anyone. Our
cross-repository, attachment indexing, and file system indexing are
unequaled.

What are some of the overall goals you keep in mind when developing
new features?
The biggest one is building things that people want. That sounds like a
truism—why would you build something that people don’t want? But in fact,
if you don’t take the care to filter what people are saying in such a way
when developing a feature, you build something that some people want and
some people hate. And that is something we have to play with all the time.
You have to think things out.

Another goal is to minimize wait time. You can’t sacrifice a user’s wait time.
The one thing people value more than anything these days is time. It is the
number one resource. We cannot, for the sake of our feature, make it
anything that sacrifices time.

Also, you have to be good server citizens. By this I mean that we have to
be almost invisible or increasingly invisible on a server so that we don’t
assume resources that someone else needs.

Finally, we avoid limits that benefit no one but our developers. If there are
limits you need to get your job done—there are some administratively
prudent ones that people want, such as limits on time taken for indexing a
document. Other limits, which were there only because they made the
software easier to write, are candidates for design revision and removal.

For Rnext, give us a taste of some of the new and enhanced features
we can expect.
A lot of them are server side. They are features that would impact people’s

© Copyright 2002 Iris Associates, Inc. 4

Notes.net: Join the search with John Curtis "Iris Today" webzine at http://www.notes.net

lives, and a lot of them are performance based. People don’t notice the
performance enhancements necessarily, but they do notice bad
performance. If they have noticed what they consider to be
less-than-optimal performance in previous versions, that will be improved.

The search engine now uses the Unified Buffer Manager (UBM), which is a
way to share data and memory. We are able—across threads—to do a
single search and share data among many users. So common searches
will be in memory already. Notes databases used the UBM extensively in
R5. Now the search engine is using it as well.

We have a new field option called Field is Present. It tells you whether or
not a field is in a document or not. This feature helps you understand your
documents better—the absence of a field helps you filter documents.

We did a lot of work on LDAP searching—did a lot to make that faster.
Routing mail through LDAP should be a much more economical process.

Also, we have a capacity improvement. We can go up to 16 terabytes per
physical index. Of course, Domain Indexes will approach that size first.
We’ve eliminated the 6 MB maximum document size, which kept large
documents from being indexed before. This is an example of a limit that got
in the way of indexing, where we had a hard, though settable limit of the
maximum document we would index. In Rnext, we will index documents in
roughly 500K chunks, greatly decreasing our memory footprint.

Tell us a little about the GTR engine and its history in Notes and
Domino. Also what is new with the GTR engine for Rnext?
In the R5 timeframe, we were in the throes of replacing the search engine
with Global Text Retrieval (GTR). GTR is called an N-gram engine. N-gram
is a way of indexing text where you take a word and break it up into
components. So you take uniform size components, and in this case, they
would be letters. For example, my last name (CURTIS) would be broken up
into CUR, URT, RTI, and TIS and stored each as separate chunks of
words. Then at query time the N-gram engine pieces together words based
upon the equal-size word fragments and gets the hits for the words.

You may say, “Why would they do that? Seems like a lot of front-end
nonsense.” But in fact the N-gram preprocessing is so fast you can’t
measure it. Secondly, it makes things easier, particularly in the area of
DBCS [double-byte character set] data where you have no word breaks,
like in Japanese or Chinese where you have no spaces to delineate the
words. N-gram is a wonderful approach because it creates sequences of
words. It creates artificial words. And at search time, you piece together the
words—so it kind of forces word breaks.

N-gram is also very good at things like fuzzy searches. If you say I want a
60 percent hit or wildcards, it is extremely fast at that. For instance, if you
do a wildcard, say you type in *nation*, you can find the letters n-a-t-i-o-n
surrounded by anything else and you are done. N-gram is markedly faster
than other indexing schemes at that kind of thing.

In Rnext, during indexing, GTR will also update its largest files in-place. In
R5, the previous version of GTR would make a working copy of the largest
files, update that, and then erase and rename the file to replace the old
one. No more. They now do update in-place. Also, they’re using the UBM to
provide much better memory management and caching during search.

Also, the Boolean process is much enhanced. GTR is making very good
use of partial search results. If you have a complicated query and part of
that query finds five documents and the other part finds ten million, the five
documents are used very intelligently to filter the ten million. It’s a drastic
improvement. The scalability has also increased to 16 terabytes.

© Copyright 2002 Iris Associates, Inc. 5

Notes.net: Join the search with John Curtis "Iris Today" webzine at http://www.notes.net

What about Domain Search? Can you explain how it works and what,
if any, changes we can expect in Rnext?
Domain Indexing and Search is a capability introduced in R5 that allows
data from many repositories to be indexed together in one central index.
These indexes are the largest ever created in Notes/Domino.

The feature evolved from Site Search (from the R4 timeframe). The
decision was made to leverage the improved Notes catalog, which is a
database that already contains information about databases in the domain.
In R5, it is up to administrators to proclaim a server to be the domain
server. This server can or cannot have an index, but it certainly has the
catalog that contains the domain information. We use that catalog to crawl
the databases on the domain to get all the information to a central place on
that machine. There are eight physical indexes that get created from that.
From that, we now have a logical central index to query against. We do tell
people to dedicate a machine, because it is a large index and you really
need a lot of memory and horsepower to get the job done.

What we index is the data of every document coming in. We also marshal
data into title, author, category, and so on. You can also keep a file system
on that and index that as well.

So Domain Search bundles the file system into the index as well?
Yes, it does. You can search Notes content and file system content in a
single query.

Can you explain what LDAP search options Notes and Domino have,
and what’s new for Rnext?
LDAP search for R5 had been a machine-generated query where you had
up to 12 word terms searching across different fields. We did admirably, but
that is a big query. We made several changes inside the GTR engine
including the way memory is managed, the UBM, those kinds of things.
Plus, we took those 12 fields and we marshaled them into just a couple.
Every name and address field, for example, are put together into a single
field that is queried by itself. So the query being generated is a lot simpler.
And we leverage all the things that were improved in GTR Boolean
processing. What we did with the fields is going to be, we believe, the basis
for cross-repository fielded search and Domain Search for future releases.

Where is Notes and Domino search headed post Rnext?
We have a set of big projects that we have to go after, such as a fielded
search that crosses repositories. Now this is a trick because people have
different designs out there and people have designed their databases to
have different field names that mean the same thing. So, potentially, huge
mapping has to happen.

Parallel search is another thing. Whether it happens on Discovery Server or
Domain Search, true parallel search would have multiple independent
machines that produce marshaled results and you get the results in a
central place and merge them.

There are many administrative features, such as backup recovery, that we
may add. It takes typically three to five days to build a domain index,
sometimes more, depending on how big your domain is. You can’t spend
that much in machinery resources and not back things up. People can back
up by hand, but they would like us to develop a method by machine.

People have also asked for various types of partial index capabilities.
Maybe they don’t want to index every single field; they want to index only
certain things. In the future, we may be putting some partial index
capabilities in.

© Copyright 2002 Iris Associates, Inc. 6

Notes.net: Join the search with John Curtis "Iris Today" webzine at http://www.notes.net

ABOUT JOHN CURTIS
John has been working in database internals for over 20 years. He’s worked on
everything from compilers to device drivers, but most of all likes building server
software that does very useful processing and performs like greased lightning. He
started at Iris in 1998 as team lead of full-text search and the team has never been
the same. He is the husband of one and father of three. In his spare time, he
produces sacred music and drama, and studies theology.

© Copyright 2002 Iris Associates, Inc. 7

