
t

by
Jonathan
Coombs

Level: Advanced
Works with: Designer 5.0
Updated: 11/01/2001

The July 2001, Iris Today article, "Applications settings tool: an
alternative to profiles," explained how to build a simple and reusable
Application Settings tool that can store any number of application settings,
either as text values or text lists. In some applications, this approach is
really all that is needed. But many applications require more sophistication.
For example, you may need to store settings of various different data types.
Or you may want to present only a subset of the settings to the application
administrators and hide the more technical ones.

This article explains how to take the simple Application Settings tool from
the previous article and enhance it to provide a more customizable UI,
allowing the developer to make the interface that all the other users see
more user-friendly and robust. It explains how to support multiple data
types, dynamic input validation, simplified script lookups, security at the
setting level, Web formatting, and maintenance of multiple installations of
the tool. The design techniques used to provide this functionality have a
broad range of application and can be used when building many kinds of
Notes applications, but I will describe them in the context of the Advanced
Settings tool.

The Advanced Settings tool is backward compatible with the simple Setting
documents. If you have already installed the simple Application Settings
tool in an application and created some Setting documents, you can
upgrade by removing the simple tool's design elements and pasting in the
advanced ones. The Advanced Settings tool will automatically recognize
the simple Setting documents and upgrade them as needed.

The Advanced Settings tool's core design elements, as well as some
optional extensions, are available in the sample Advanced Settings
database in the Iris Sandbox.

This article assumes a thorough understanding of designing Notes/Domino
applications. We also recommend that you read the Iris Today article "
Applications settings tool: an alternative to profiles" as background for
this article.

Overview of the Advanced Settings tool
The simple Application Settings tool consisted of a Setting form for creating
and editing individual Settings, a Settings UI (user-interface) view for
viewing and opening them, and a Settings lookup view for accessing them
through code.

The Advanced Settings tools uses the same basic design, but it splits the
Settings UI view into two views: Admin Settings and Developer Settings. It
also moves the Setting form's actions and header into a computed subform
and provides other optional design elements.

Including these design elements and making a few changes to the Setting
form enables the Advanced Settings tool to flexibly support a variety of new
features:

Distinguishing between developers and other users�

Supporting multiple data types�

© Copyright 2001 Iris Associates, Inc. 1

Notes.net: Developing an advanced settings tool "Iris Today" webzine at http://www.notes.net

Protecting your settings with input validation�

Protecting your settings using Authors fields�

Simplifying setting lookups in LotusScript�

Maintaining multiple installations of the tool�

Adapting the settings tool to your application without making design �

changes

Let's explore each of these advanced capabilities.

Distinguishing between developers and other users
The simple Applications Settings tool did not distinguish between
developers and application administrators, even though the two kinds of
users generally use a given application (and that application's settings)
quite differently. A developer typically creates and names each setting,
writes instructions for it, and gives it a default value. An application
administrator, on the other hand, should normally only be able to modify the
default values of existing settings.

To make this distinction between developers, administrators, and other
users, I've added the [developer] and [admin] roles to the Advanced
Settings database's ACL. I've also added some hide-when formulas to the
advanced Setting form and to the New Setting action in the Admin Settings
view. Because of these hide-whens, the advanced Setting form allows
developers to view and edit all fields, but it lets administrators edit only the
Value field.

Here is the advanced Setting form:

The Category, Name, Value, and Instructions fields in the Setting form were
explained in the first article. The other fields will be explained in this
article.

The advanced Setting form has a Developer Fields table that is hidden from
all nondevelopers. All fields in this table are editable, and the only editable
field outside of the table is the Value field. Several descriptive fields
(Category, Name, and Instructions) appear again outside of the Developer
Fields table in computed-for-display fields for the benefit of nondevelopers.

© Copyright 2001 Iris Associates, Inc. 2

Notes.net: Developing an advanced settings tool "Iris Today" webzine at http://www.notes.net

The hide-when formula used for the Developer Fields table and New
Setting action looks like this:

roles := @LowerCase(@UserRoles);
isdev := @IsMember("[developer]"; roles);
!isdev

This hide-when formula returns True if the current user has not been given
the [developer] role. Since Notes ACL roles are case sensitive, the formula
uses @LowerCase to make sure it will match on other variations such as
[Developer] or [DEVELOPER].

Why worry about case variations in an ACL role? In a sample database
created from scratch, I can naturally create roles using any case I choose.
But what if I want to install a reusable tool that uses an [admin] role, into a
database that has already defined an [Admin] role? The natural solution
would be to put both roles in the ACL, but Notes unfortunately does not
allow this. Because of this partial implementation of role case sensitivity, I
prefer to use @LowerCase to ignore case in any formulas that check ACL
roles. (Note that this technique will not work for Readers and Authors
fields.)

Not only do developers and administrators edit different fields within each
setting, but there can be settings that should be entirely restricted to
developers. The Setting form contains a new field named fHidden, and the
Admin Settings view (formerly known as Settings) uses this field to hide any
setting whose fHidden field is set to Y. To access these hidden settings, a
user must either use the hidden lookup view or install the optional
Developer Settings view. (Of course, any user with Editor access who
knows where to find these settings will be able to modify them.)

The Developer Settings view displays all settings using the original
selection formula:

SELECT fDocType = "Setting"

The selection formula for the Admin Settings view excludes hidden settings:

SELECT (fDocType = "Setting") & (fHidden != "Y")

Supporting multiple data types
Most applications could contain various kinds of settings, including text
settings supplying form pop-up help, text lists supplying keyword field
options, name fields specifying workflow approvers, or even rich text
settings containing canned e-mails or embedded resource files. The simple
Setting form cannot store these kinds of data because it only has Value
fields of types Text (fValue) and Text List (fValues). It also displays both
fields at the same time, even though the application feature that uses a
given setting will only use one of the two.

To better handle multiple data types, the advanced Setting form expects the
developer to create all Setting documents and specify their data types.
Then, when an administrator needs to modify a setting, all the settings are
available in one view, and each document displays only the type of Value
field necessary for the required type of setting. For example, the Value field
in a setting of type Name List allows the administrator to select multiple
names from the Address book, while the Value field in a document of type
Rich Text provides Notes rich text field features.

The data type of an advanced Setting document is specified in the Type
field on the advanced Setting form. This field allows a developer to specify
which type of Value field to use, and each Value field is set to hide unless
its type has been specified. Nondevelopers don't need to choose between

© Copyright 2001 Iris Associates, Inc. 3

Notes.net: Developing an advanced settings tool "Iris Today" webzine at http://www.notes.net

multiple Value fields and don't even see the Type field at all. In the example
advanced Settings document shown above, the setting is of type Text, so
the other kinds of Value fields are hidden.

The Type field, fType, is defined as a combo-box whose possible values
are:

Text|T1
Text List|TM
Name|N1
Name List|NM
Rich Text|R1
Date|D1
Radio Button|S1
Check Box|SM

The item selected from this combo-box will determine which Value field is
used to display and store this document's setting. To maintain backward
compatibility with the simple Application Settings tool, the default value
formula for fType is:

@If (
(fValue = "") & (fValues != "");

"TM";
"T1"

)

That is, a Setting document whose type is undefined is assumed to be of
type Text unless the Text List Value field is filled and the Text Value field is
empty.

With the Type field in place, new kinds of Value fields can be supported by
adding another option to the Type field's combo-box, adding a Value field of
the new type to the form, setting the hide-when formula for the new Value
field, and updating the formula for fValueString. (The formula for
fValueString is described at the end of this section.) For example, here are
various Value fields:

Name and Name List settings
The Name and Name List fields are very similar to the Text and Text List
fields, except that they are of type Names and are set to "Use Address
dialog for choices." For users with Notes clients, this can make some
settings much more user-friendly. For example, one of my other reusable
tools is a "nag agent" that loops through any view of workflow documents
that are awaiting approval and reminds each document's reviewer to come
review the document. Optionally, the agent can CC the application's
administrators on each reminder e-mail. My nag agent tool expects this list

© Copyright 2001 Iris Associates, Inc. 4

Notes.net: Developing an advanced settings tool "Iris Today" webzine at http://www.notes.net

of administrators to be stored in a Name List setting document named
AutoReminders\CopyTo. (This Setting document is provided in the
Advanced Settings database under the Examples category, as are
various other sample settings.)

Unfortunately, there is no simple way of duplicating the Notes Address
dialog box for Web users. Sometimes an organization chooses to develop
its own standard Web dialog box, which you can incorporate into the
Advanced Settings tool to better support Name fields from the Web. If you
have a Web dialog box of your own, you can use it instead. Or, you can use
the basic Web name picker included with the Advanced Settings tool. It has
an action hotspot next to the fValueName field that uses JavaScript to call
the agtNamePicker agent and pass parameters to it:

window.open('http://' + document.forms[0].fdServerWeb.value + '/' +
document.forms[0].fdDBPathWeb.value + '/agtNamePicker?OpenAgent&' +

document.forms[0].fValueName.value + "&fValueName&0", 'VerifyUser',
'width=500,height=300,resizable=yes,scrollbars=yes')

The URL generated by this hotspot includes the server name and database
path, an agent to run (agtNamePicker?OpenAgent), the value to search for,
the field into which the name should be returned (fValueName), and
whether that field supports multiple values. (Note that if you choose to
remove or replace the supplied name picker, the display fields
fdServerWeb and fdDBPathWeb can be removed as well.) The
agtNamePicker agent essentially searches the Address Book for the
supplied name in the Setting document and generates an HTML page
listing the possible matches on that name as radio buttons. (To examine
the agent's code, see the agtNamePicker agent sidebar.)

Rich Text settings
Rich Text fields are useful for storing many different kinds of data, including
images, formatted text, and attachments. Except for a few important
caveats, the Advanced Settings tool can support all of these for both Notes
and Web clients.

From the Notes client, all you need to do is create a setting and specify its
type to be Rich Text. The Value field will natively support all formatting and
file attachments from the Notes client. (If you want the administrator to
attach files to a setting, it is a good idea to mention the File - Attach menu
command in the setting's instructions.)

© Copyright 2001 Iris Associates, Inc. 5

Notes.net: Developing an advanced settings tool "Iris Today" webzine at http://www.notes.net

For the benefit of the Web client, the fValueRich field is set to "Display
Using Java Applet." This nifty Domino option allows Web users to use a
limited set of text formatting features. Note that Web users who open Rich
Text settings will be prompted to download the rich text applet. This applet
formats rich text quite differently than the Notes client, so you should avoid
using both kinds of clients on these kinds of settings. Hopefully, future
versions will be a little more compatible, but for now I try to avoid editing
any Rich Text fields from the Web.

The Java Rich Text applet does not support file attachments, so I've also
placed a File Upload control and a checkbox field (fShowUpload) on the
Setting form. The upload control will only display if fShowUpload is
checked. (Incidentally, the upload control can be displayed to the Web
client for all types of settings, not just Rich Text.)

Date settings
I have yet to use a setting of type Date, but I've included this type in order
to support all the main data types. A setting of this type might be useful if
you were to create a scheduled agent that should only run when the
application administrator has specifically set it for a certain date (for
example, see Examples\05\DeleteLastYear in the Advanced Settings
database.)

Invalid dates entered through Web clients can generate type mismatch
errors before input validation has a chance to catch them. Instead of
creating a sophisticated JavaScript validation routine, I've chosen to
present a separate field of type Text (fValueDateWeb) to Web users. This
field's input translation formula attempts to validate the Web field and
synchronize it with the Notes field (fValueDate):

@If (@ClientType = "Notes"; @Return(fValueDate); "");
webdate := @TextToTime(fValueDateWeb);
newdate := @If (

@IsError(webdate);
"";

webdate
);
FIELD fValueDate := newdate;
newdate

From a Notes client, the value from the Notes field is simply copied into the
Web field. From a Web client, the Web field's value is validated, cleared if
invalid, and copied into the Notes field. Clearing invalid entries is less than
ideal, but it is a simple way of avoiding type mismatch errors.

Formula settings

© Copyright 2001 Iris Associates, Inc. 6

Notes.net: Developing an advanced settings tool "Iris Today" webzine at http://www.notes.net

One of the most powerful features of LotusScript is the Evaluate function,
which allows LotusScript routines to use the functionality of many formula
language functions. In a nutshell, the Evaluate function takes a string
containing a formula and returns the result of the formula as a variant. For
example, the following LotusScript code will print the current user's
common name to the status bar:

Dim varTemp As Variant
varTemp = Evaluate("@Name([CN]; @Username)")
Print varTemp(0)

For more information about the Evaluate function, refer to the Domino R5
Designer Help and the Iris Today article, "Simplifying your LotusScript
with the Evaluate statement."

While developing an application, you may realize that a portion of your
LotusScript code will need to change in the future in order to accommodate
changes in the users' needs. Whenever possible, it's a good idea to convert
this portion of code into a formula and store it as a setting. It can then be
looked up dynamically when it needs to be used, and passed to the
Evaluate function. The agtTestSoftCode agent and SoftCode\Formula
setting illustrate this approach. The agent evaluates the formula stored in
the Setting document and prints out the first line of the result:

Sub Initialize 'agtTestSoftCode
Dim s As New NotesSession, vwSettings As NotesView
Dim strFormula As String, varResult As Variant
Set vwSettings = s.CurrentDatabase.GetView("vwLookSettings")
strFormula =

vwSettings.GetDocumentByKey("SoftCode*Formula").fValue(0)
varResult = Evaluate (strFormula)
Print varResult(0) 'print the first line of the result

End Sub 'agtTestSoftCode

"Soft-coding" features strategically in this manner can add a lot of flexibility
to your applications. On the other hand, soft-coded features also make your
code dependent on the Advanced Settings tool. If the tool is not installed
properly, or if a formula setting has been deleted, the code that depends on
it will fail. If the formula setting is quite complex, losing it is tantamount to
losing part of your database design. With these considerations in mind, I
usually choose to store a small number of soft-coded formulas as settings.

Storing formulas as ordinary text settings works adequately but can be
somewhat tedious to debug and test. Instead of adding a completely new
type to support formula settings, I have enhanced the Text type to provide
formula testing.

© Copyright 2001 Iris Associates, Inc. 7

Notes.net: Developing an advanced settings tool "Iris Today" webzine at http://www.notes.net

To enable formula testing on a given Text setting, check Yes for the Is a
formula? (flsFormula) field. This sets the flag field fIsFormula to True,
unhiding the Test hotspot at the bottom of the form. The Test hotspot runs
the Evaluate function against the formula stored in the Value field and
displays the result. (For another example of a formula setting, take a look at
Examples\06\Formula in the Advanced Settings database.)

Some formulas are meaningful at the database level, but many others are
designed to be used in the context of a specific Notes document. For
example, @DocumentUniqueID and @IsResponseDoc have no meaning
except in reference to a document. The result of evaluating the formula
@Responses in isolation is zero. But if you pass a document object into the
Evaluate function along with the formula, it will be evaluated against that
document and will return a legitimate value. Since this is the kind of formula
I use most often, I added a Test Against View field (fFormulaView). If a view
is specified in fFormulaView, clicking the Test hotspot will evaluate the
formula in the Value field against a document in the specified view.

For example, if I were writing a routine to export all the documents in a view
to Excel, I might have the export routine use a formula that computes the
exact cell values that should be exported. The Test hotspot would allow me
to debug the formula before attempting an export:

© Copyright 2001 Iris Associates, Inc. 8

Notes.net: Developing an advanced settings tool "Iris Today" webzine at http://www.notes.net

The LotusScript code behind the Test hotspot looks like this:

Sub Click(Source As Button)
Dim ws As New NotesUIWorkspace, s As New NotesSession
Dim db As NotesDatabase, vwTest As NotesView, doc As
NotesDocument
Dim strFormula As String, docTest As NotesDocument
Set db = s.CurrentDatabase
Set doc = ws.CurrentDocument.Document
strFormula = doc.fValue(0)
If strFormula <> "" Then

'A formula exists
varResult = ""
If doc.fFormulaView(0) = "" Then

'Evaluate the formula
varResult = Evaluate (strFormula)

Else
'Evaluate the formula against a document
Set vwTest = db.GetView(doc.fFormulaView(0))
If Not (vwTest Is Nothing) Then

iFormulaPreview_g = iFormulaPreview_g + 1
Set docTest =
vwTest.GetNthDocument(iFormulaPreview_g)
If docTest Is Nothing Then

'Loop back to the first doc
iFormulaPreview_g = 1
Set docTest =
vwTest.GetNthDocument(iFormulaPreview_g)

End If
 varResult = Evaluate (strFormula, docTest)

End If
End If
doc.ftFormulaTest = varResult
doc.GetFirstItem("ftFormulaTest").SaveToDisk = False
Call ws.CurrentDocument.Refresh

End If
End Sub 'Hotspot : Click

This code first makes sure a formula has actually been placed in the Value
field. If so, it then checks the fFormulaView field to determine whether the
formula should be evaluated at the database level or against a document.
The syntax for the first case should look familiar:

varResult = Evaluate (strFormula)

In the second case, the view specified in the fFormulaView field is opened
and a document in the view is accessed. The formula is then evaluated
against that document:

varResult = Evaluate (strFormula, docTest)

But which document in the view should the formula be tested against?
Whenever a Setting document is opened, the Setting form's PostOpen
event initializes a global counter variable named iFormulaPreview_g to
zero. Each time the user clicks the Test hotspot, this counter is
incremented. This allows the user to test the formula against a variety of
documents.

Finally, I wanted the formula result to be displayed but not saved with the
Setting document. Fortunately, the NotesItem class provides a SaveToDisk
property to support temporary fields:

© Copyright 2001 Iris Associates, Inc. 9

Notes.net: Developing an advanced settings tool "Iris Today" webzine at http://www.notes.net

doc.GetFirstItem("ftFormulaTest").SaveToDisk = False

The temporary field (ftFormulaTest) is displayed through a
computed-for-display field (fdFormulaTest), so no trace is left on the
back-end document.

Radio Button and Checkbox settings
It is often best to limit a setting's possible value to a predefined or
computed list of options. The fValueRadio and fValueCheck provide this
functionality through single-selection radio buttons and multiple-selection
checkboxes, respectively.

For a setting of this type, the advanced Setting form requires a valid Notes
formula in the fOptionsFormula field that will return a list of values to
present to the user. For example, you might have an on/off switch setting
that enables or disables all the scheduled agents in your application.
(Those agents would run, but each would check this setting before doing
anything.) For example, in the Advanced Settings database, the
Examples\03\RunScheduledAgents setting's Radio Button Options Formula
looks like this:

"Yes|y":"No|n"

Here's how the UserPrefs\Templates\HomePage setting's Check Box
Options Formula appear in the Settings document:

The Exiting event of the fOptionsFormula field evaluates the entered
formula, places the resulting list in the hidden fOptions field, and refreshes
the document. This refreshes the fValueRadio or fValueCheck field's option
list to match the current formula. (Since we have already seen examples of
the Evaluate function, the Exiting event's code is not shown here.)

Updating the fValueString formula
As described in the first article, a hidden computed field, fValueString,
stores the current value of a setting as a single text value. This makes it
easier to display the setting in a view or access its value to be processed
as text. The formula for fValueString uses the type of the current setting to
determine which Value field contains the setting's value and which
conversion formula should be used:

© Copyright 2001 Iris Associates, Inc. 10

Notes.net: Developing an advanced settings tool "Iris Today" webzine at http://www.notes.net

@If (
fType = "T1"; fValue;
fType = "TM"; @Implode(fValues; @NewLine);
fType = "N1"; @Name([CN]; fValueName);
fType = "NM"; @Implode(@Name([CN]; fValueNames); @NewLine);
fType = "D1"; @Text(fValueDate);
fType = "S1"; fValueRadio;
fType = "SM"; @Implode(fValueCheck; @NewLine);
fType = "R1"; fValueString;
""

)

The types of fields that support multiple values are converted to multi-line
strings using @Implode, and name fields are converted to text using
@Text. There is no formula capable of extracting the unformatted text of a
rich text field into text, so fValueString ignores the Rich Text type. Instead,
the form's QueryClose event uses the GetFormattedText method (in
NotesRichTextItem) to accomplish this task:

Sub Queryclose(Source As Notesuidocument, Continue As Variant)
'If a rich text setting, put plain text into fValueString.
Dim doc As NotesDocument
Dim rtitem As NotesRichTextItem
Dim strTemp As String
Set doc = Source.document
If bSaveAttempted And (Cstr(doc.fType(0)) = "R1") Then

' QuerySave has set bSaveAttempted to True,
' and this a Rich Text setting.
Set rtitem = doc.GetFirstItem("fValueRich")
strTemp = rtitem.GetFormattedText(False, 0)
doc.fValueString = strTemp
Call doc.save (False, False)

End If
End Sub

Tying up loose ends with a WebQuerySave agent
You may have noticed that QueryClose code only solves the rich text
problem for fValueString if the user has a Notes client, and that the Exiting
event of the fOptionsFormula field also only works from Notes. Web clients
do not directly support such form events as PostOpen, Exiting, QuerySave,
or QueryClose. Instead, Domino allows the functionality of some of these
events to be duplicated in custom WebQueryOpen and WebQuerySave
agents.

I have created one such agent, named Web Save frmSetting, to duplicate
the functionality of the frmSetting.fOptionsFormula.Exiting and
frmSetting.QueryClose events. If installed, this agent is launched on the
WebQuerySave event (otherwise, the agent's absence is ignored and its
functionality is unavailable to Web users):

@Command([ToolsRunMacro]; "agtSaveFrmSetting");
@True

The ToolRunMacro command returns True if the agent runs successfully,
and False otherwise. This formula, however, returns True either way
because the Web save agent is an optional design element.

Protecting your settings with input validation
The main purpose for making the Setting form more user-friendly is to
reduce the likelihood that an application administrator will misunderstand
and accidentally break a setting. Using the Address dialog box or a
predefined set of checkboxes can help protect certain kinds of settings, but

© Copyright 2001 Iris Associates, Inc. 11

Notes.net: Developing an advanced settings tool "Iris Today" webzine at http://www.notes.net

others can be best protected by input validation.

Of course, a specific setting's input validation formula cannot be
hard-coded into the generic Setting form. Once again the Evaluate function
provides an excellent alternative: storing the formula in a special hidden
field. On QuerySave, the Setting form evaluates any formula stored in this
field (fValidation) against the current setting document before allowing the
document to be saved:

Sub Querysave(Source As Notesuidocument, Continue As Variant)
Dim doc As NotesDocument, varTemp As Variant, strTemp As String
'If specified, run the validation formula
Set doc = Source.Document
If doc.fValidation(0) <> "" Then

On Error Goto tagErrorHandler 'enable the validation error
handler
varTemp = Evaluate (doc.fValidation(0), doc)
On Error Goto 0 'disable the validation error handler
strTemp = Cstr (varTemp(0))
If strTemp <> "1" Then

If strTemp = "" Then strTemp = "Document did not pass
validation."
Messagebox strTemp, , "Validation"
Continue = False 'Don't allow the save

End If
End If

tagEnd:
Exit Sub

tagErrorHandler:
Messagebox "Error #" + Cstr(Err) + ": " + Error$, , "Error in validation
formula"
Continue = False 'Don't allow the save
Resume tagEnd

End Sub 'frmSetting.QuerySave

Since this code only mimics Notes validation, the output of the formula in
the fValidation field needs to be a little different than that of a standard
validation formula. Instead of returning @Success or @Failure, I chose to
require the formula to return 1 on success and an error message on failure.
This way, the QuerySave code can simply check for the 1 value and
recognize anything else as an error message to be displayed. If the
validation formula itself causes an error, the error handler returns the Notes
error message and still prevents the user from saving.

Perhaps the simplest and most common use of field validation is to require
that the field in question contain a value. In a setting of type Text, this kind
of validation formula might look like this:

@If (fValue = ""; "Value is required."; "1")

Note that the input validation feature is not currently supported for Web
clients, since they do not execute the QuerySave code.

Protecting your settings using Authors fields
By default, any Notes document that doesn't have an Authors field can only
be edited by users with Editor access or higher. In some applications, you
may wish to give certain users access to modify settings without giving
them full Editor access. The fAuthors field is a standard Authors field that
allows a developer to enter the names or roles of users who should be
allowed to modify the current setting.

For example, many applications allow registered users to maintain personal
profiles and individualized settings. You could use the Advanced Settings

© Copyright 2001 Iris Associates, Inc. 12

Notes.net: Developing an advanced settings tool "Iris Today" webzine at http://www.notes.net

tool to allow users to customize the way they interact with a Notes/Domino
application. To see a partial implementation of this in the Advanced
Settings database, run the Register agent by selecting Actions - Register.
This agent creates a set of user preference settings for the current user
based on a set of templates:

The Register agent makes copies of all the documents in the
UserPrefs\Templates category, re-categorizes the copies under UserPrefs*
User Name, and adds the user's name to the fAuthors field.

Simplifying setting lookups in LotusScript
In the first article, I recommended using standard documents instead of
profile documents, but I also mentioned that using standard documents can
involve more overhead. Although they are easier to maintain and copy from
one database to another, they are more tedious to access from code. I
know of no way around this in formula language, but I have created a script
library named slSTGSettings that can help simplify setting lookups in
LotusScript.

For example, the STGGetSettingValue function provides access to setting
values in much the same way as @GetProfileField provides access to
profile document fields. Without this function, a very concise setting lookup
in script might look like this:

Dim varSet As Variant
Dim s As New NotesSession, vw As NotesView
set doc = s.CurrentDatabase.GetView("vwLookSettings")
varSet = vw.GetDocumentByKey("SoftCode*Formula",True).fValue(0)

Using STGGetSettingValue, the lookup code is much simpler:

Use "slSTGSettings"
Dim varSet As Variant
varSet = STGGetSettingValue ("SoftCode*Formula")

The STGGetSettingValue function takes care of finding the requested
setting in a lookup view, determining which Value field to use, and returning
the current value. (To see this function's source code, see the
STGGetSettingValue function sidebar.)

Maintaining multiple installations of the tool
In the first article, I made a passing reference to "element-level design

© Copyright 2001 Iris Associates, Inc. 13

Notes.net: Developing an advanced settings tool "Iris Today" webzine at http://www.notes.net

inheritance," which is quite similar to database-level design inheritance but
is more finely tuned.

Suppose you have a Notes application template stored in an NTF file—the
standard Notes log template is a good example. When you create a new
log database based on this template, the new database is set to inherit its
entire design from the database that claims to be the StdR4AgentLog
template (in this case, alog4.ntf). Choosing to refresh the design of the
database (File - Database - Refresh Design) causes the entire design of
olog.nsf to be updated to match the design of alog4.ntf. This means that if
your organization were to modify the standard Agent Log template, those
modifications could be easily rolled out to all the agent logs in the
organization. This is known as database-level design inheritance, and it is
specified in the Database properties box.

Note: Remember that database-level design inheritance is linked by these
database properties alone, and not by the filename of the template
database. So you must be careful not to give multiple template databases
the same template name.

Database-level inheritance is commonly used to refresh an application's
design from the development server to the production server. Some
companies also use a test server between development and production. In
this three-layer scenario, the databases on the development and test
servers would both be given a template name (for example, Order Log),
and the databases on the test and production servers would both be set to
inherit design from that template.

Element-level design inheritance is a bit trickier than database-level
inheritance. Individual design elements can be marked to inherit their
designs from specific templates, independently of any database-level
inheritance. During a design refresh, first any unmarked elements are
refreshed from the database-level template (if there is one), and then any
marked elements are refreshed from their specified templates. (Note that a
design refresh will delete any unmarked elements not found in the
template, but it will never delete a marked element.)

I like to maintain a central template of reusable tools (including the
Advanced Settings tool) on the development server, and use element-level
inheritance to roll out changes to those tools. Whenever I fix or enhance an
existing tool, I do so in the template, ensuring that the change will be
refreshed to all my application's templates on the development server. (Of

© Copyright 2001 Iris Associates, Inc. 14

Notes.net: Developing an advanced settings tool "Iris Today" webzine at http://www.notes.net

course, this means I have to make sure that each fix or enhancement is
compatible with all the applications that use the tool.)

For example, I might take a standard log database and add some
functionality to it that enhances its ability to support an Orders database. If
the database as a whole inherits from StdR4AgentLog, any new elements I
create would need to be set to inherit from their own template. If I installed
the Advanced Settings tool, I would set its design elements to inherit from
Settings as shown here:

In a three-layer development environment, the inheritance structure would
end up looking something like this:

Of course, this approach saves the most time when used with complex,
self-contained packages or tools. It could be used to centrally manage the
design of either the simple or advanced Settings tool, but it might not be
worth the effort for the simpler one.

For more information concerning design inheritance, refer to the Domino
R5 Designer Help.

Adapting the Settings tool to your application

© Copyright 2001 Iris Associates, Inc. 15

Notes.net: Developing an advanced settings tool "Iris Today" webzine at http://www.notes.net

without making design changes
Most successful applications present users with a clear and consistent
interface. After going to all the trouble of installing a reusable tool into an
application and setting up element-level design inheritance, it would pain
me to throw it all away just to make the tool's interface match the
application's interface. There really is no perfect solution to the dilemma
between reusability and usability, but there are techniques that can help.

Many installation-specific parts of a form's design can be moved into a
computed subform. The Advanced Settings tool comes with its header and
actions already separated out into the sfrmHeader subform. If necessary,
design inheritance can be turned off for just this one element and it can be
customized to match the look and feel of the application it is installed in.

In addition, in Domino applications, the appearance of an entire Web form
can be controlled through cascading stylesheets (CSS). The advanced
Setting form can format itself for Web users using the stylesheet stored in
the optional SettingForm\Styles Setting document. The form's HTML Head
Content property looks for this setting and, if it finds it, inserts the contents
of its Value field between the HTML page's <HEAD> tags:

REM "If styles have been supplied via a setting doc, use them.";
temp := @DbLookup("Notes":"NoCache"; ""; "vwLookSettings";
"SettingForm*Styles"; "fValue");
styleblock := @If(@IsError(temp); ""; temp);
styleblock

CSS and modern Web browsers can give you a lot of control over the
appearance of an HTML page without making any formatting changes to
the HTML code itself. This can enable you change the font, color scheme,
and spacing of a Web form without modifying the form's design. For
example, in the Advanced Settings database, try swapping
SettingForm\Styles2 for SettingForm\Styles. You get something like this:

© Copyright 2001 Iris Associates, Inc. 16

Notes.net: Developing an advanced settings tool "Iris Today" webzine at http://www.notes.net

Personally, I'm not so sure my customers would go for the orange and red
look, but imagine how much more fun prototyping sessions can be with
CSS.

Conclusion
There are many things to consider when developing an
application—multiple kinds of users and software clients, input validation,
security, usability, and testing just to name a few. Developing flexible,
reusable tools like the Advanced Settings tool can be the key to
progressively increasing the quantity and quality of applications you can
build. You can further leverage the impact of design reuse across many
applications by taking advantage of element-level design inheritance.

ABOUT JONATHAN COOMBS
Jonathan is a software developer for Joseph Graves Associates, Inc. in
Indianapolis. JGA is a full service consulting firm that delivers quality IT services and
customized e-commerce, Internet, and document management software solutions.
Jonathan's professional interests include software reuse, Lotus Notes and Domino
technology, and computational linguistics. He can be reached at
jcoombs@jgraves.com.

© Copyright 2001 Iris Associates, Inc. 17

]

agtNamePicker agent
Sub Initialize 'agtNamePicker

'This agent searches the Address Book for the supplied name and generates an HTML page listing the
possible matches on
' that name as radio buttons.
'Sample call (JavaScript in an action hotspot):
'window.open('http://' + document.forms[0].ServerAndPath.value + '/agtNamePicker?OpenAgent&' +
document.forms[0].fUserAdd.value + "&fUser&1", 'VerifyUser',
'width=500,height=300,resizable=yes,scrollbars=yes')
'Parameters:
'- You should pass exactly three parameters in the URL calling this agent, in this order:
' - strSearchFor (string): The search value the user typed in
' - strDestField (string): The field in which to store the selected name
' - bMulti (0 or 1): Whether strDestField supports multiple values. If true, new names are separated using
commas
'Known bugs:
'- Netscape 6 ignores the OK button
'
'Sample output:
'<HTML>
'<!-- Lotus-Domino (Release 5.0.5 - September 22, 2000 on Windows NT/Intel) -->
'<HEAD>
'</HEAD>
'<BODY TEXT="000000">
' <script> function addNames() {
' window.opener.document.forms[0].fValueName.value = Temp.value;
' window.close();
' }

 ' </script>
'Search for users with name containing the word - duck - found these matches. Please select one:

'<INPUT NAME="Temp" TYPE=hidden VALUE="">
'<INPUT TYPE=radio NAME="SelectUser" VALUE="Daffy Duck" onClick="Temp.value='Daffy Duck'">Daffy
Duck

'<INPUT TYPE=radio NAME="SelectUser" VALUE="Donald Duck" onClick="Temp.value='Donald
Duck'">Donald Duck

'
<DIV ALIGN=center><INPUT TYPE=button onClick="addNames()" VALUE="OK">
'<INPUT TYPE=button onClick="window.close()" VALUE="Cancel"><DIV>
'</BODY>
'</HTML>

Dim session As New NotesSession, doc As NotesDocument
Dim strSearchFor As String
Dim varMatches As Variant
Dim varTemp As Variant, strTemp As String, strNewValue As String
Dim varParms As Variant, strDestField As String, bMulti As Integer, bFound As Integer

On Error Goto Errorhandler

Set doc = session.DocumentContext

© Copyright 2001 Iris Associates, Inc. 1

Notes.net: Developing an advanced settings tool (agtNamePicker agent sidebar) "Iris Today" webzine at http://www.notes.net

'Parse out the three parameters from the CGI string.
'Examples: "?OpenAgent&Smith&fUserName&1", "?OpenAgent&&fUserName&0"
strTemp = |@Explode (@Right("| + doc.Query_String_Decoded(0) + |";"&"); "&") |
varParms = Evaluate (strTemp)
bFound=False 'Assume the worst: no match will be found
If Ubound (varParms) = 2 Then

'We got all the parameters
strSearchFor = varParms(0)
strDestField = varParms(1)
bMulti = Cint(varParms(2))
strNewValue = "Temp.value"

strTemp = |@unique(@NameLookup ([Exhaustive]; "| + strSearchFor + |" ; "Fullname"))|
varMatches = Evaluate(strTemp)
If (Ubound(varmatches) >= 0) And (varmatches(0) <> "") Then

'Match(es) found! Build JavaScript and radio buttons to present the names and process the user's
selection.

bFound = True
'Create the script called by the OK button
Print | <script> function addNames() {|
If bMulti Then

'The OK button should append the selected name to any existing names in the strDestField
field.
Print | var strOld = window.opener.document.forms[0].| + strDestField + |.value;|
Print | if (strOld == "") {|
Print | window.opener.document.forms[0].| + strDestField + |.value = | + strNewValue + |;|
Print | }|
Print | else {|
Print | window.opener.document.forms[0].| + strDestField + |.value = strOld + ", " + | +
strNewValue + |;|
Print | }|

Else
'The OK button should write the selected name over any existing name in the strDestField field.
Print | window.opener.document.forms[0].| + strDestField + |.value = | + strNewValue + |;|

End If
Print | window.close(); } </script>|
'Create the body that displays the matches
Print "Search for users with name containing the word - " & strSearchFor & " - found these matches.
Please select one:

"
Print |<INPUT NAME="Temp" TYPE=hidden VALUE="">|
Forall varMatch In varMatches

'Create a radio button for this match
Print |<INPUT TYPE=radio NAME="SelectUser" VALUE="| & varMatch & |"
onClick="Temp.value='| & varMatch & |'">| & varMatch & |
|

End Forall
'Create the OK and Cancel buttons
Print |
<DIV ALIGN=center><INPUT TYPE=button onClick="addNames()" VALUE="OK">|
Print |<INPUT TYPE=button onClick="window.close()" VALUE="Cancel"><DIV>|

End If
End If

If Not(bFound) Then
'No matches found. Just create a message and a Close button.
If strSearchFor = "" Then

Print "Please enter a name to search for.
"
Else

Print "Search for users with name containg the word - " & strSearchFor & " - did not find any
matches.
"

End If
Print |
<DIV ALIGN=center><INPUT TYPE=button onClick="window.close()"
VALUE="Close"></DIV>|

End If

© Copyright 2001 Iris Associates, Inc. 2

Notes.net: Developing an advanced settings tool (agtNamePicker agent sidebar) "Iris Today" webzine at http://www.notes.net

Exit Sub

ErrorHandler:
Print "Error " & Str(Err) & ": " & Error$

End Sub 'agtNamePickerS

© Copyright 2001 Iris Associates, Inc. 3

]

STGGetSettingValue function
Const C_SETTINGS_VIEW = "vwLookSettings"

Public Function STGGetDocument (strView As String, strKey As String) As NotesDocument
' Given a doc's view and key, return the doc
Dim s As New NotesSession
Set STGGetDocument = s.CurrentDatabase.GetView(strView).GetDocumentByKey(strKey,True)

End Function 'STGGetDocument

Public Function STGGetSettingValue (strName As String) As Variant
' Created by Jonathan Coombs on 9-15-2000
' Given a Setting doc's key, look up the doc and return the appropriate field value as a variant
' Use the type field to determine which value field to use. Only return an array if the setting type
' supports multiple values.
' This function provides the Settings tool with a degree of modularity. If you use it to handle
' all of your lookups, none of your calling code needs to directly refer to the fields on frmSetting.
' Warning: The "r1" type is not yet fully supported. See STGTest() and STGGetSettingRTF() for details.

Dim doc As NotesDocument, item As NotesItem
Dim strType As String, strError As String, varReturn As Variant

'If an error occurs, ignore it and return null
strError = ""
On Error Goto tagError

Set doc = STGGetDocument (C_SETTINGS_VIEW, strName)
strType = Lcase$ (Cstr (doc.fType(0)))

Select Case strType
Case "t1"

varReturn = doc.fValue(0)
Case "tm"

varReturn = doc.fValues
Case "n1"

varReturn = doc.fValueName(0)
Case "nm"

varReturn = doc.fValueNames
Case "r1"

'Warning: This case currently only works in debug mode.
Set item = doc.GetFirstItem ("fValueRich")
Set varReturn = item 'Warning: This will return an object, not a simple value

Case "d1"
varReturn = doc.fValueDate(0)

Case "s1"
varReturn = doc.fValueRadio(0)

Case "sm"
varReturn = doc.fValueCheck

Case Else
varReturn = strError

© Copyright 2001 Iris Associates, Inc. 1

Notes.net: Developing an advanced settings tool (STGGetSettingValue function sidebar) "Iris Today" webzine at http://www.notes.net

End Select

tagEnd:
If strType = "r1" Then

Set STGGetSettingValue = varReturn
Else

STGGetSettingValue = varReturn
End If
Exit Function

tagError:
varReturn = strError
Resume tagEnd

End Function 'STGGetSettingValue

© Copyright 2001 Iris Associates, Inc. 2

