
Controlling the agents in your system
by Julie Kadashevich

[Editor's note: This article resides in "Iris Today", the technical Webzine located on the http://www.notes.net Web site
produced by Iris Associates, the developers of Domino/Notes. This article focuses on technology specific to Notes
4.6. You can download Notes 4.6 from http://notes.net/gold]

Overview
Notes contains a powerful agent technology that gives you the ability to create automated tasks that range from
simple to complex. To help you control the power of these agents, Notes allows you to specify restrictions on who can
run an agent.

This article will introduce you to the different areas that control agent execution. The key thing to remember is that an
agent can run only if the user has the appropriate rights -- rights in the database ACL where the agent will run, rights
to run a particular type of agent, and rights to do what the agent is written to do. We'll also examine how the following
factors come into play:

• How agents interact with database access control lists (ACLs).

• How agent restrictions vary according to the type of agent.

• How shared and personal agents differ.

• How embedded agents work when created by users with different restrictions.

• How restrictions change according to where the agent is run: on the desktop versus the server, in the
foreground versus the background, or on the Notes client versus the Web client.

Then, we'll pull everything together by looking at some scenarios, and discussing the LotusScript properties you can
use to help you control agents.

The basics of controlling agent execution
There are two basic areas that control whether a user can run an agent:

• The database ACL -- The user must have the appropriate rights in the database ACL where the agent will
operate.

• Agent restrictions in the Server document -- The user must be able to run a particular type of an agent.

The tricky part is figuring out which user's rights are checked. An agent user may simply initiate the execution of the
agent, or be the invoker. The user may also be the one that created or modified the agent, or the creator. The
creator is sometimes referred to as the signer of the agent. The key point is that the invoker and the creator may or
may not be the same user. Depending on the type of agent and where the agent is run, sometimes the rights of the
invoker are checked, and sometimes it's the creator's rights that are checked. You'll learn more about these
distinctions in the rest of this article.

Database ACL rights
Users with at least Reader access to a database can run agents, but the agents they run or create can only update
documents to which they have at least Editor access. Once it is determined that the invoker of the agent has the
rights to run the agent, the rights of the creator of the agent are used to determine what the agent can do.

Agent restrictions
After the user's rights in the database ACL have been checked, the next step is verifying that the user can run a
particular type of agent. Different types of security controls exist for different types of agents, which we'll discuss
according to what the agents runs, whether its personal or shared, and whether it's an embedded agent.

Agent types
When you create an agent, you must select what the agent will run: simple actions, formulas, LotusScript, or Java.
Now, you'll learn about the security concerns for these different types of agents.

Simple agents and formula agents have no restrictions on who can run them. The documents they can access are
dictated by the ACL rights of the database where they are created.

LotusScript and Java agents have two modes of operation: restricted and unrestricted. Restricted access allows a
user to run agents with some features disabled (for example, file I/O); it is the more common access. Unrestricted
access allows all features of LotusScript or Java to be used, which means that Notes security can be circumvented.
Therefore, unrestricted access should only be given to trusted individuals.

You specify restrictions for LotusScript and Java agents in the Agent Manager section of the Server document, using
the fields "Run restricted LotusScript/Java agents" and "Run unrestricted LotusScript/Java agents." The restrictions
for LotusScript and Java agents are the same -- that is, you cannot specify restricted LotusScript rights and
unrestricted Java rights for the same person at the same time. If either field is blank, then no users may run these
agents with restricted/unrestricted access on this system. If either of the fields is filled in, then the user must be in the
field to have restricted/unrestricted access.

Personal and shared agents
Any of the four types of agents can be personal or shared. A shared agent can be seen and run by anyone who has
access to a database that contains the agents, including the agent creator. Personal, or private, agents can be seen
and run only by the agent creator. If users have Designer access or higher to a database, they can create shared
agents; otherwise, they can create only personal agents.

Whether a user can run a personal agent is determined by the "Run personal agents" field in the Agent Manager
section under Agent Restrictions (shown in the previous screen). If the field is blank, then all users may run personal
agents. If the field is filled in, the user must be explicitly listed in the field to be able to run personal agents. Personal
agents cannot be accessed through the Web client.

Embedded agents
Agents can invoke other agents, and it is possible for the creators of these agents to be different. With embedded
agents, the restrictions that apply to the top-level agent propagate to the embedded agents. (In contrast, on the
Notes client, the database ACL rights of each agent creator control the agent execution. And, on the Web client, the
rights depend on the setting of the "Run Agent as Web user" option, which you'll learn more about later in this article.)

Server access
An additional condition to consider is whether the user has the rights to do what the agent is written to do. For
example, if the agent is written to update documents on another server, the user must have access to that server. For
all agents, Notes uses the fields "Access server" and "Not access server" in the Restrictions section of the Server
document to verify that users have the proper access rights to the server.

If the user is listed explicitly in the "Not access server" field, the agent will not run. If the "Access server" field is
blank, all users may access the server and run the agent. If the field is filled in, the user must be listed explicitly in the
field to be able to access the server. Otherwise, the agent will not run. If the same name appears in both "Access
server" and "Not access server" fields, the "Not access server" restriction takes precedence.

Changing the server
If you are given a database with an agent that is scheduled to run on a server that you don't have access to, you can
change the server on which the agent is scheduled to run. To change the server; edit the agent, click the Schedule
button, and select a different server name from the "Run only on" drop-down list. You can also specify an asterisk (*)
to run the agent on the current server rather than on the server explicitly specified in the agent (that is, the server of
the agent creator). If you specify an asterisk (*), the $MachineName field in Agent Properties is set to an asterisk (*).

Access to create new databases
For LotusScript/Java agents, a check is also made to verify that the user can create new databases. This information
is found in the "Create new databases" field in the Restrictions section of the Server document. If the field is blank,
then ALL users may create databases on this system. If the field is filled in, the user must be in the field to be able to
create databases. If the user who does not have the rights to create a new database runs an agent that creates a
new database, the agent will generate a run-time error.

Notes does not perform the "Server access" and "Create new database" checks if the agent is running on the desktop
rather than on the server. Notes does not perform an ACL check if you are accessing a database on the Local
server.

Running agents in various situations
The agent restrictions you've been learning about may change according to where you're running the agent: on the
desktop or server, in the foreground or background, or on the Notes client or Web client.

Desktop or Server
An agent is running on a server if it is part of an agent on a server-based database, and the agent has one of the
following triggers:

• When new mail arrives

• When documents have been created or modified

• On schedule hourly, daily, weekly, or monthly

When an agent runs on a server, all restriction and ACL checks are operational, except when the server is "Local." If
the user has a local server, he/she can schedule agents to run on the Local server in two ways:

• Create an agent in the database on the server and refer to it as "Local" (and not by its true name).

• Select "Local" when creating an agent by clicking on the Schedule button and then selecting "Local" from
the "Run only on" drop-down list. When the agent is run on a Local server, the restriction checks are by-
passed.

All other agents (invoked through the Actions menu, from the Agents list, or When documents have been pasted
trigger) run on the workstation, regardless of whether the database itself is on a workstation or a server. When the
agent is run locally on the workstation, the restriction checks are bypassed.

When an agent runs on the Web, Notes performs all the restriction and ACL checks, because Web agents always run
on the server.

Foreground or Background
If the agent is triggered through the Notes user interface (manually through the Actions menu or from the Agent list),
Notes is running the agent in the foreground. If the agent is invoked through a schedule or by an event (such as a
document update or the arrival of new mail), Notes is running the agent in the background. The
foreground/background concept does not apply to the agents invoked through the Web where agents always run on
the Web server, which is a mix of the foreground/background environment.

On the Notes client
When the agent is invoked from the Notes client, the agent always runs with the rights of the agent creator. To see
who the agent creator is:

1. Open the agent properties infobox.

2. Select the Fields tab, and look at the $UpdatedBy field.

To change the agent creator, you need to edit and save the agent while logged in as a person who will appear as the
agent creator.

In order for a LotusScript/Java agent to run successfully, the agent creator needs to be listed in the appropriate
restrictions field in the Agent Manager section of the Server document. If the creator is not listed in the Server
document, Notes won't run the agent and will display the following error on the server console:

06/29/97 01:44:42 PM AMgr: Agent 'test' in 'test1.nsf' does not have proper execution access, cannot be run

The person who is running the agent (the invoker) does not have to be listed in the Agent Manager restrictions, but
should have at least Reader access to the database where the agent resides.

On the Web client
On the Web client, as with the Notes client, the agent restrictions are determined by the agent creator. However,
Notes uses either the database rights of the agent invoker or the agent creator to verify database access.

By default, a Web user runs agents with the rights of the agent creator. However, you can specify that a Web user
run an agent as him/herself by selecting the "Run Agent as Web user" option in the agent's properties:

1. Open the agent properties infobox.

2. Select the Design tab.

3. Select the "Run Agent as Web user" box.

When "Run Agent as Web user" is selected, the Web user is prompted to log in with a name and password. Then, the
user name is used to check for rights in the database ACL.

You can only create agents through a Notes client, not a Web client. Only shared agents can run on the Web client.
The Web does not have a scheduling mechanism, so agents that run on the Web cannot be run at a pre-defined time.
The "When should this agent run" option available during agent creation applies only to agents that are run from the
Notes client. The option "Which documents should it act on" determines which documents the agent will operate on.
It applies to both agents invoked from the Notes client as well as on the Web client. The following four options are not
supported on the Web:

• All unread documents in view

• All documents in view

• Selected documents

• Pasted documents

Scenarios
Now, we'll put the rules into action by examining some scenarios. In the following scenarios, let's assume that we
have three shared agents: a simple agent A, which was created by A-Creator; agent B, which was created by B-
Creator; and agent C, which was created by C-Creator. Agent A calls agent B, which in turn calls Agent C.

To initiate the first agent, we have User X, who is listed in the database ACL as a Reader. The database ACL also
lists B-Creator and C-Creator with rights appropriate to the actions in their agents. (A-Creator does not need to be
listed in the ACL, because agent A is a simple agent.) The Server document lists only B-Creator in a restricted field,
and C-Creator in an unrestricted field.

Scenario One:
User X, using the Notes client, enables Agent A to run. Agent A is scheduled to run every time a new document is
created or an old document is updated. Since User X has rights to the database, s/he is allowed to run the agent.
When Agent A starts, the rights of the A-Creator take over. Agent A prepares to invoke Agent B. The Agent Manager
checks to see if A-Creator is allowed to run restricted agents. Because A-Creator is not listed in the Server
document, the agent fails.

Scenario Two:
Let's add A-Creator to the unrestricted field in the Server document (under Agent Manager restrictions).

User X, using the Notes client, again enables Agent A to run. Since User X has rights to the database, s/he is allowed
to run the agent. When Agent A starts, the rights of the A-Creator take over. Agent A prepares to invoke Agent B.
The Agent Manager checks to see if A-Creator is allowed to run restricted agents. A-Creator has unrestricted rights,
meaning that restricted rights are OK as well. Then, the Agent Manager checks to see if B-Creator has rights to the
database to allow the agent to continue to execute. Agent-B prepares to invoke Agent C, and the Agent Manager
checks to see if A-Creator has the rights to run an unrestricted agent. A-Creator does, so the Agent Manager checks
if C-Creator has the rights to the database. Because C-Creator is listed in the database ACL, the agent successfully
invokes all embedded agents.

Scenario Three:
Let's examine a similar scenario on the Web client, with the assumption that the "Run Agent as Web user" has been
selected for all of the agents.

User X, using the Web client, clicks on a button that processes all new and modified documents. In order for this
scenario to work, User X must be listed in the database ACL. While in Scenario Two, we checked if the different
agent creators had rights to the database, we'll now check whether User X (the invoker) has the rights to the
database. The rest of the scenario will work just as before.

If the "Run Agent as Web user" checkbox was not selected, this scenario would be identical to Scenario Two, where
the agent creator's rights for the database were used in all database security checks.

LotusScript properties
To help you control agents, you can use properties of the LotusScript Session and NotesAgent classes. The
following LotusScript properties should help you figure out who is the creator and invoker of agents, as well as other
information relevant to controlling agent behavior.

LotusScript Session properties:

• CurrentAgent -- Agent that the program is running.

• CurrentDatabase -- Database in which the program is running.

• EffectiveUserName -- User ID of the creator of the current script. The user name that is in effect for the
current script. For a script running on a workstation, this is the name of the current user. For a script
running on a server, this is the name of the script's owner (the person who last saved the script). On the

Web this value depends on how the "Run Agent as Web user" option is set. If it is checked, this value will
be the name of the Web user. If it is not set, it will be the name of the person who last modified and saved
an agent (the agent's owner).

• IsOnServer -- True if the program is running on a server.

• UserName -- User ID of the current server or user. For a script running on a workstation, this is the name of
the current user. For a script running on a server, this is the name of the server.

LotusScript NotesAgent properties:

• IsEnabled -- This property is intended for use with scheduled agents, which can be enabled and disabled.
This property always returns True for hidden agents and agents that are run from a menu.

• IsPublic -- Indicates if an agent is public or personal. A public agent is accessible to all users of a database
and is stored in the database. A personal agent is accessible only to its owner and is stored in the owner's
desktop file.

• Owner -- The name of the person who last modified and saved an agent (the agent's owner).

Conclusion
To summarize, there are many factors that affect agent execution:

• How the agent interacts with the database ACL.

• What the agent contains -- simple actions, formulas, LotusScript, or Java. LotusScript and Java agents can
be either restricted or unrestricted.

• Whether the agent is shared or personal.

• Whether the agent is embedded.

• Where you run the agent -- on the desktop or server, foreground or background, or from the Notes client or
Web client.

If you have a problem running an agent, you want to learn exactly whose user rights are controlling the execution.
You can first determine who the agent creator is by looking at the agent's $Updated by field. Then, you can determine
the agent invoker at run time by using the LotusScript NotesAgent Owner property. Once you have the names of the
agent creator and agent invoker, examine the Server document and the database ACL to make sure that the
information matches up.

ABOUT THE AUTHOR
Julie Kadashevich came to Iris in March of 1997 from FTP Software, where she worked on Java and C++ mobile
agent technology. For Notes Release 4.6 she has been focusing on the Agent Manager and Java.

